论文标题

重型分布中的罕见事件的Instantons

Instantons for rare events in heavy-tailed distributions

论文作者

Alqahtani, Mnerh, Grafke, Tobias

论文摘要

随机系统的大型偏差理论和激体积分被广泛用于深入了解罕见事件的进化和概率。以此为核心的意识到,在适当的情况下,罕见事件是由他们最不可能实现的主导。通过对相应随机场理论的路径积分的鞍点近似进行计算,然后将无效的随机抽样问题降低到确定性优化问题中:找到最小作用的路径,即intsanton。但是,在存在重尾巴的情况下,标准算法计算偶然的算法严重无法收敛。该故障的原因是由于非凸率较大的偏差率函数而导致的缩放累积生成函数(CGF)的差异。我们通过通过非线性对可观察的可观察到的速率函数“共启用”速率函数来提出解决方案,即使在存在超过指数或代数尾巴衰减的情况下,它也使我们能够计算激体顿。该方法可以推广到需要CGF存在的其他情况下,例如对蒙特 - 卡洛算法的重要性采样的指数倾斜。我们通过将其应用于具有沉重尾巴的几个随机系统中的罕见事件,包括由孤子形成引起的光纤中的极端功率尖峰来证明拟议的形式主义。

Large deviation theory and instanton calculus for stochastic systems are widely used to gain insight into the evolution and probability of rare events. At its core lies the realization that rare events are, under the right circumstances, dominated by their least unlikely realization. Their computation through a saddle-point approximation of the path integral for the corresponding stochastic field theory then reduces an inefficient stochastic sampling problem into a deterministic optimization problem: finding the path of smallest action, the instanton. In the presence of heavy tails, though, standard algorithms to compute the instanton critically fail to converge. The reason for this failure is the divergence of the scaled cumulant generating function (CGF) due to a non-convex large deviation rate function. We propose a solution to this problem by "convexifying" the rate function through nonlinear reparametrization of the observable, which allows us to compute instantons even in the presence of super-exponential or algebraic tail decay. The approach is generalizable to other situations where the existence of the CGF is required, such as exponential tilting in importance sampling for Monte-Carlo algorithms. We demonstrate the proposed formalism by applying it to rare events in several stochastic systems with heavy tails, including extreme power spikes in fiber optics induced by soliton formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源