论文标题

通过融合由多模式传感器捕获的互补信息来增强图像超分辨率

Boosting Image Super-Resolution Via Fusion of Complementary Information Captured by Multi-Modal Sensors

论文作者

Wang, Fan, Yang, Jiangxin, Cao, Yanlong, Cao, Yanpeng, Yang, Michael Ying

论文摘要

图像超分辨率(SR)提供了一种有前途的技术,可以增强低分辨率光传感器的图像质量,从而在广泛的机器人技术应用中促进了表现更好的目标检测和自动导航。值得注意的是,最先进的SR方法通常是使用单通道输入对训练和测试的,忽略了以下事实:在不同光谱域中捕获高分辨率图像的成本差异很大。在本文中,我们试图利用低成本通道(可见/深度)的互补信息,以使用较少的参数来提高昂贵的通道(热量)的图像质量。为此,我们首先提出了一种有效的方法,可以根据实时3D重建的多模式数据的实时3D重建在各种观点处捕获的多模式数据。然后,我们设计了一个特征级的多光谱融合残留网络模型,通过自适应整合在多光谱图像中显示的共同出现特征,以执行热图像的高准确性SR。实验结果表明,这种新方法可以通过考虑其他低成本通道的互补信息来有效地减轻图像SR的不良反相问题,从精度和效率方面显着优于最先进的SR方法。

Image Super-Resolution (SR) provides a promising technique to enhance the image quality of low-resolution optical sensors, facilitating better-performing target detection and autonomous navigation in a wide range of robotics applications. It is noted that the state-of-the-art SR methods are typically trained and tested using single-channel inputs, neglecting the fact that the cost of capturing high-resolution images in different spectral domains varies significantly. In this paper, we attempt to leverage complementary information from a low-cost channel (visible/depth) to boost image quality of an expensive channel (thermal) using fewer parameters. To this end, we first present an effective method to virtually generate pixel-wise aligned visible and thermal images based on real-time 3D reconstruction of multi-modal data captured at various viewpoints. Then, we design a feature-level multispectral fusion residual network model to perform high-accuracy SR of thermal images by adaptively integrating co-occurrence features presented in multispectral images. Experimental results demonstrate that this new approach can effectively alleviate the ill-posed inverse problem of image SR by taking into account complementary information from an additional low-cost channel, significantly outperforming state-of-the-art SR approaches in terms of both accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源