论文标题

重新考虑通用特征转换的可学习的树滤

Rethinking Learnable Tree Filter for Generic Feature Transform

论文作者

Song, Lin, Li, Yanwei, Jiang, Zhengkai, Li, Zeming, Zhang, Xiangyu, Sun, Hongbin, Sun, Jian, Zheng, Nanning

论文摘要

可学习的树过滤器提出了一种非凡的方法,用于模拟语义分割的结构保护关系。然而,固有的几何约束迫使其专注于近距离距离的区域,从而阻碍了有效的远距离相互作用。为了放大几何约束,我们通过将其重新定义为马尔可夫随机字段,并引入一个可学习的单词来进行分析。此外,我们提出了一种可学习的跨越树算法来替换原始的非差异性算法,从而进一步提高了灵活性和鲁棒性。通过上述改进,我们的方法可以更好地捕获长期依赖性,并以线性复杂性保留结构细节,这将扩展到几个视觉任务,以实现更通用的特征变换。对象检测/实例分段的广泛实验证明了对原始版本的一致改进。对于语义细分,我们在没有铃铛的城市景观基准上实现了领先的表现(82.1%MIOU)。代码可从https://github.com/stevengrove/learnabletreefilterv2获得。

The Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation. Nevertheless, the intrinsic geometric constraint forces it to focus on the regions with close spatial distance, hindering the effective long-range interactions. To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term. Besides, we propose a learnable spanning tree algorithm to replace the original non-differentiable one, which further improves the flexibility and robustness. With the above improvements, our method can better capture long-range dependencies and preserve structural details with linear complexity, which is extended to several vision tasks for more generic feature transform. Extensive experiments on object detection/instance segmentation demonstrate the consistent improvements over the original version. For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles. Code is available at https://github.com/StevenGrove/LearnableTreeFilterV2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源