论文标题

基于生成对抗网络的基于采样的路径计划的启发式

Generative Adversarial Network based Heuristics for Sampling-based Path Planning

论文作者

Zhang, Tianyi, Wang, Jiankun, Meng, Max Q. -H.

论文摘要

基于抽样的路径计划是机器人路径计划的流行方法。有了统一的采样策略来探索状态空间,在没有配置空间的复杂几何建模的情况下,可以找到可行的路径。但是,不能保证初始解决方案的质量,并且对最佳解决方案的收敛速度很慢。在本文中,我们提出了一种基于图像的新型路径计划算法,以克服这些局限性。具体而言,生成对抗网络(GAN)旨在将环境图(表示为RGB图像)作为输入,而无需其他预处理。输出也是RGB图像,其中有希望的区域(可能存在可行的路径)被分割。这个有希望的区域被用作启发式方法,以实现路径策划者的不均匀采样。我们进行了许多仿真实验来验证所提出的方法的有效性,结果表明,我们的方法在初始溶液的质量以及对最佳解决方案的收敛速度方面的性能要好得多。此外,除了与训练集类似的环境外,我们的方法在与训练集截然不同的环境中也很好地运行。

Sampling-based path planning is a popular methodology for robot path planning. With a uniform sampling strategy to explore the state space, a feasible path can be found without the complex geometric modeling of the configuration space. However, the quality of initial solution is not guaranteed and the convergence speed to the optimal solution is slow. In this paper, we present a novel image-based path planning algorithm to overcome these limitations. Specifically, a generative adversarial network (GAN) is designed to take the environment map (denoted as RGB image) as the input without other preprocessing works. The output is also an RGB image where the promising region (where a feasible path probably exists) is segmented. This promising region is utilized as a heuristic to achieve nonuniform sampling for the path planner. We conduct a number of simulation experiments to validate the effectiveness of the proposed method, and the results demonstrate that our method performs much better in terms of the quality of initial solution and the convergence speed to the optimal solution. Furthermore, apart from the environments similar to the training set, our method also works well on the environments which are very different from the training set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源