论文标题

从间隔值数据的汇总模糊数字的相似性度量

Similarity measure for aggregated fuzzy numbers from interval-valued data

论文作者

Gunn, Justin Kane, Khorshidi, Hadi Akbarzadeh, Aickelin, Uwe

论文摘要

本文提出了一种使用间隔协议方法(IAA)从间隔(IAA)中间隔(IAA)的两个汇总模糊数之间的相似性程度的方法。本研究中提出的相似性度量包含几种特征和属性,其中是新颖到集合的模糊数。本研究中完全重新定义或修改的属性包括面积,周长,质心,四分位数和一致比率。使用主成分分析(PCA)学习了每个功能的建议加权。此外,提供了一个说明性示例,以详细说明相似度度量的应用和未来使用的潜在使用。

This paper presents a method to compute the degree of similarity between two aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The similarity measure proposed within this study contains several features and attributes, of which are novel to aggregated fuzzy numbers. The attributes completely redefined or modified within this study include area, perimeter, centroids, quartiles and the agreement ratio. The recommended weighting for each feature has been learned using Principal Component Analysis (PCA). Furthermore, an illustrative example is provided to detail the application and potential future use of the similarity measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源