论文标题

联邦学习中的动态聚类

Dynamic Clustering in Federated Learning

论文作者

Kim, Yeongwoo, Hakim, Ezeddin Al, Haraldson, Johan, Eriksson, Henrik, Silva Jr., José Mairton B. da, Fischione, Carlo

论文摘要

在无线网络的资源管理中,联合学习已被用来预测移交。但是,非独立和相同分布的数据降低了此类预测的准确性性能。为了克服问题,联邦学习可以利用数据聚类算法并为每个集群建立机器学习模型。但是,传统的数据聚类算法应用于交换预测时,显示了三个主要局限性:数据隐私漏洞的风险,群集的固定形状和非自适应数量的群集。为了克服这些局限性,在本文中,我们提出了一种三步数据聚类算法,即:基于生成的对抗网络聚类,群集校准和群集除法。我们表明,基于对抗性网络的生成性群集可保留隐私。群集校准通过修改簇来处理动态环境。此外,分裂聚类通过反复选择并将群集分为多个簇来探索不同数量的簇。基线算法和我们的算法在时间序列预测任务上进行了测试。我们表明,我们的算法提高了预测模型的性能,包括蜂窝网络移交,提高了43%。

In the resource management of wireless networks, Federated Learning has been used to predict handovers. However, non-independent and identically distributed data degrade the accuracy performance of such predictions. To overcome the problem, Federated Learning can leverage data clustering algorithms and build a machine learning model for each cluster. However, traditional data clustering algorithms, when applied to the handover prediction, exhibit three main limitations: the risk of data privacy breach, the fixed shape of clusters, and the non-adaptive number of clusters. To overcome these limitations, in this paper, we propose a three-phased data clustering algorithm, namely: generative adversarial network-based clustering, cluster calibration, and cluster division. We show that the generative adversarial network-based clustering preserves privacy. The cluster calibration deals with dynamic environments by modifying clusters. Moreover, the divisive clustering explores the different number of clusters by repeatedly selecting and dividing a cluster into multiple clusters. A baseline algorithm and our algorithm are tested on a time series forecasting task. We show that our algorithm improves the performance of forecasting models, including cellular network handover, by 43%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源