论文标题
朝着工业互联网的沟通效率和抗攻击的联合边缘学习
Towards Communication-efficient and Attack-Resistant Federated Edge Learning for Industrial Internet of Things
论文作者
论文摘要
联合边缘学习(FEL)允许边缘节点在工业互联网(IIOT)中协作培训全球深度学习模型(IIT),这大大促进了工业4.0的开发。但是,FEL面临两个关键挑战:通信开销和数据隐私。训练大型多节点模型时,FEL遭受了昂贵的通信开销。此外,由于FEL易受梯度泄漏和标签撞击攻击的脆弱性,因此对手很容易损害全球模型的训练过程。为了应对这些挑战,我们提出了用于IIOT中边缘计算的沟通效率和隐私增强的异步FEL框架。首先,我们引入了一个异步模型更新方案,以减少边缘节点等待全局模型聚合的计算时间。其次,我们提出了一种异步的局部微分隐私机制,该机制提高了通信效率,并通过在边缘节点的梯度中添加精心设计的噪声来减轻梯度泄漏攻击。第三,我们设计了一种云侧恶意节点检测机制来通过测试本地模型质量来检测恶意节点。这样的机制可以避免恶意节点参加培训以减轻标签的攻击。对两个现实世界数据集的大量实验研究表明,所提出的框架不仅可以提高沟通效率,而且可以减轻恶意攻击,同时其准确性与传统的FEL框架相媲美。
Federated Edge Learning (FEL) allows edge nodes to train a global deep learning model collaboratively for edge computing in the Industrial Internet of Things (IIoT), which significantly promotes the development of Industrial 4.0. However, FEL faces two critical challenges: communication overhead and data privacy. FEL suffers from expensive communication overhead when training large-scale multi-node models. Furthermore, due to the vulnerability of FEL to gradient leakage and label-flipping attacks, the training process of the global model is easily compromised by adversaries. To address these challenges, we propose a communication-efficient and privacy-enhanced asynchronous FEL framework for edge computing in IIoT. First, we introduce an asynchronous model update scheme to reduce the computation time that edge nodes wait for global model aggregation. Second, we propose an asynchronous local differential privacy mechanism, which improves communication efficiency and mitigates gradient leakage attacks by adding well-designed noise to the gradients of edge nodes. Third, we design a cloud-side malicious node detection mechanism to detect malicious nodes by testing the local model quality. Such a mechanism can avoid malicious nodes participating in training to mitigate label-flipping attacks. Extensive experimental studies on two real-world datasets demonstrate that the proposed framework can not only improve communication efficiency but also mitigate malicious attacks while its accuracy is comparable to traditional FEL frameworks.