论文标题
以$ d $ -ary Grover的算法为$ n $ n $ qudit toffoli Gate的渐近改进电路
Asymptotically Improved Circuit for $d$-ary Grover's Algorithm with Advanced Decomposition of $n$-qudit Toffoli Gate
论文作者
论文摘要
最近,构建量子计算机执行量子算法的进展非常出色。 Grover在二进制量子系统中的搜索算法对经典范式提供了相当大的速度。此外,与传统的二进制量子系统相比,Grover的算法可以扩展到利用较大状态空间的优势,以利用较大的状态空间的优势,以利用较大的状态空间的优势,与传统的二进制量子系统相比,这有助于减少算法的运行时间。在Qudit量子系统中,$ n $ Qudit Toffoli Gate在Grover算法的准确实现中起着重要作用。在本文中,使用较高的尺寸Qudits实现了广义的$ n $ qudit toffoli门,以实现没有Ancilla Qudit的对数深度分解。然后,Grover算法的电路是针对任何$ d $ ar的量子系统设计的,其中$ d \ ge 2 $,拟议的$ n $ qudit toffoli Gate与早期方法相比获得了优化的深度。分解$ n $ qudit toffoli门的技术需要访问两个立即更高的能量水平,从而使设计容易受到错误的影响。然而,我们表明,与最先进的作品相比,由于我们降低了门数和电路深度的误差概率的百分比降低是显着的。
The progress in building quantum computers to execute quantum algorithms has recently been remarkable. Grover's search algorithm in a binary quantum system provides considerable speed-up over classical paradigm. Further, Grover's algorithm can be extended to a $d$-ary (qudit) quantum system for utilizing the advantage of larger state space, which helps to reduce the run-time of the algorithm as compared to the traditional binary quantum systems. In a qudit quantum system, an $n$-qudit Toffoli gate plays a significant role in the accurate implementation of Grover's algorithm. In this article, a generalized $n$-qudit Toffoli gate has been realized using higher dimensional qudits to attain a logarithmic depth decomposition without ancilla qudit. The circuit for Grover's algorithm has then been designed for any $d$-ary quantum system, where $d \ge 2$, with the proposed $n$-qudit Toffoli gate to obtain optimized depth compared to earlier approaches. The technique for decomposing an $n$-qudit Toffoli gate requires access to two immediately higher energy levels, making the design susceptible to errors. Nevertheless, we show that the percentage decrease in the probability of error is significant as we have reduced both gate count and circuit depth as compared to that in state-of-the-art works.