论文标题
洛伦兹和真实稳定多项式的空间是欧几里得球
Spaces of Lorentzian and real stable polynomials are Euclidean balls
论文作者
论文摘要
我们证明,洛伦兹和真实稳定多项式的投射空间对封闭的欧几里得球是同构的。这解决了六月的猜想和作者。该证明利用并完善了相互作用粒子系统中的对称排除过程与多项式的几何形状之间的联系。
We prove that projective spaces of Lorentzian and real stable polynomials are homeomorphic to closed Euclidean balls. This solves a conjecture of June Huh and the author. The proof utilizes and refines a connection between the symmetric exclusion process in Interacting Particle Systems and the geometry of polynomials.