论文标题

用于大气辐射转移模型的基于梯度的自动查找台生成器

Gradient-based Automatic Look-Up Table Generator for Atmospheric Radiative Transfer Models

论文作者

Vicent, Jorge, Alonso, Luis, Martino, Luca, Sabater, Neus, Verrelst, Jochem, Camps-Valls, Gustau

论文摘要

地球观察数据的大气校正是用于成功的遥感应用程序的卫星任务数据处理链中最关键的步骤之一。大气辐射转移模型(RTM)反演方法通常是优选的,因为它们的准确性很高。但是,由于其较高的计算时间,因此在每个像素基础上执行RTM是不切实际的,因此,预先计算了大型的多维查找表(LUTS)以供以后的插值。为了进一步减少RTM计算负担和LUT插值的误差,我们开发了一种方法来自动选择要包含在LUT中的最小和最佳节点集。我们介绍了基于梯度的自动LUT发电机算法(GALGA),该算法依赖于采集函数的概念,该函数包含了(a)RTM的Jacobian评估,以及(b)有关当前节点的多元分布的信息。我们说明了Galga在自动构造和优化中等分辨率大气传输(Modtran)LUTS中的功能。我们的结果表明,与LUT节点的伪随机分布相比,Galga(1)LUT尺寸降低了$ \ sim $ 75 \%\%和(2)最大插值相对误差0.5 \%降低0.5 \%,因此可以得出结论,自动型LUT设计可能会从Galga中拟议的拟议中受益于Galga In Computation Arristation Arrist和Interporation comproyporation和Interporation和Interporation croundporation和Interporation。

Atmospheric correction of Earth Observation data is one of the most critical steps in the data processing chain of a satellite mission for successful remote sensing applications. Atmospheric Radiative Transfer Models (RTM) inversion methods are typically preferred due to their high accuracy. However, the execution of RTMs on a pixel-per-pixel basis is impractical due to their high computation time, thus large multi-dimensional look-up tables (LUTs) are precomputed for their later interpolation. To further reduce the RTM computation burden and the error in LUT interpolation, we have developed a method to automatically select the minimum and optimal set of nodes to be included in a LUT. We present the gradient-based automatic LUT generator algorithm (GALGA) which relies on the notion of an acquisition function that incorporates (a) the Jacobian evaluation of an RTM, and (b) information about the multivariate distribution of the current nodes. We illustrate the capabilities of GALGA in the automatic construction and optimization of MODerate resolution atmospheric TRANsmission (MODTRAN) LUTs for several input dimensions. Our results indicate that, when compared to a pseudo-random homogeneous distribution of the LUT nodes, GALGA reduces (1) the LUT size by $\sim$75\% and (2) the maximum interpolation relative errors by 0.5\% It is concluded that automatic LUT design might benefit from the methodology proposed in GALGA to reduce computation time and interpolation errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源