论文标题
旋转颗粒的潮汐效应
Tidal effects for spinning particles
论文作者
论文摘要
在扩展标量粒子的潮汐作用的最新推导下,我们在这里介绍了潮汐变形的$ 1/2 $粒子的动作。专注于包含Weyl张量的两个功率的操作员,我们将希尔伯特系列的振幅结合起来,以构建潮汐作用。借助潮汐作用,我们计算了对旋转1/2-2/2振幅的领先 - 米科夫斯基潮汐贡献,以$ \ mathcal {o}(g^{2})$产生。我们的幅度提供了证据,表明观察到的远距离自旋通向两个点颗粒的散射延伸至潮汐变形物体的散射。从散射振幅中,我们发现了保守的两体哈密顿量,线性和角度冲动,Eikonal相,自旋踢和对齐的旋转散射角。我们在途中的电磁案例中提出了类似的结果。
Expanding on the recent derivation of tidal actions for scalar particles, we present here the action for a tidally deformed spin-$1/2$ particle. Focusing on operators containing two powers of the Weyl tensor, we combine the Hilbert series with an on-shell amplitude basis to construct the tidal action. With the tidal action in hand, we compute the leading-post-Minkowskian tidal contributions to the spin-1/2 -- spin-1/2 amplitude, arising at $\mathcal{O}(G^{2})$. Our amplitudes provide evidence that the observed long range spin-universality for the scattering of two point particles extends to the scattering of tidally deformed objects. From the scattering amplitude we find the conservative two-body Hamiltonian, linear and angular impulses, eikonal phase, spin kick, and aligned-spin scattering angle. We present analogous results in the electromagnetic case along the way.