论文标题

高阶半拉格朗日动力学方案,用于可压缩湍流

High-order semi-Lagrangian kinetic scheme for compressible turbulence

论文作者

Wilde, Dominik, Krämer, Andreas, Reith, Dirk, Foysi, Holger

论文摘要

传统上,使用用于离散版本的Navier-Stokes方程版本的明确时间集成器来模拟湍流可压缩流。但是,相关的courant-friedrichs-lewy条件严重限制了最大时间步长。利用玻尔兹曼方程的材料衍生物的拉格朗日性质,我们现在引入了可行的三维半拉格朗日晶格boltzmann方法(sllbm),该方法避免了这一限制。尽管许多用于可压缩流的晶格玻尔兹曼方法由于三个维度的离散速度数量巨大而限于两个维度,但SLLBM仅使用45个离散速度。基于可压缩的泰勒绿色涡流模拟,我们表明,即使与文献中的模拟相比,即使时间步长最多要大得多,新方法也可以准确捕获冲击或冲击物以及3D中的湍流,而无需使用其他过滤或稳定技术。因此,我们的新方法使研究人员首次可以通过完全显式的方案研究可压缩的湍流,该方案的范围仅由物理学决定,同时与空间离散化相结合。

Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源