论文标题
P3上的新的非还原模量组件2等级2的可半轴承杆
A new non-reduced moduli component of rank 2 semistable sheaves on P3
论文作者
论文摘要
在本文中,我们描述了Gieseker-Maruyama模量空间的新组件$ \ MATHCAL {M}(14)$连贯的可半固定等级-2带Chern类$ C_1 = 0,\ C_2 = 14,\ C_2 = 14,\ C_3 = 0,\ C_3 = 0 $ on $ \ nronny-nontrant--- {该组件的构建基于系带e的基本变换的技术以及著名的Mumford的示例,即希尔伯特(Hilbert)方案的非还原成分的平滑空间曲线14和属24属。
In the present paper we describe new component of the Gieseker-Maruyama moduli space $\mathcal{M}(14)$ of coherent semistable rank-2 sheaves with Chern classes $c_1=0, \ c_2=14, \ c_3=0$ on $\mathbb{P}^{3}$ which is generically non-reduced. The construction of this component is based on the technique of elementary transformations of sheaves and famous Mumford's example of a non-reduced component of the Hilbert scheme of smooth space curves of degree 14 and genus 24.