论文标题

INERF:颠倒神经辐射场进行姿势估计

INeRF: Inverting Neural Radiance Fields for Pose Estimation

论文作者

Yen-Chen, Lin, Florence, Pete, Barron, Jonathan T., Rodriguez, Alberto, Isola, Phillip, Lin, Tsung-Yi

论文摘要

我们提出Inerf,该框架通过“倒”神经radiancefield(NERF)来执行无网状姿势估​​计。 NERF已被证明对查看合成的任务非常有效 - 综合现实世界场景或对象的新观点。在这项工作中,我们研究了是否可以通过NERF通过NERF应用分析,以进行无网状,仅RGB 6DOF姿势估计 - 给定图像,找到相机相对于3D对象或场景的摄像机的翻译和旋转。我们的方法假设在培训或测试时间期间都不可用对象网格模型。从初始姿势估计开始,我们使用梯度下降来最大程度地减少观察到的图像中从NERF和像素呈现的像素之间的残留物。在我们的实验中,我们首先研究1)如何在姿势细化过程中采样射线以收集信息性梯度,以及2)不同的射线尺寸如何影响合成数据集上的INERF。然后,我们证明,对于LLFF数据集的复杂现实世界场景,Inerf可以通过估计新图像的相机姿势并将这些图像用作NERF的其他训练数据来改善NERF。最后,我们显示INERF可以执行类别级的对象姿势估计,包括在训练过程中看不见的对象实例,并通过从单个视图中推断出NERF模型,并通过RGB图像进行RGB图像。

We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF). NeRFs have been shown to be remarkably effective for the task of view synthesis - synthesizing photorealistic novel views of real-world scenes or objects. In this work, we investigate whether we can apply analysis-by-synthesis via NeRF for mesh-free, RGB-only 6DoF pose estimation - given an image, find the translation and rotation of a camera relative to a 3D object or scene. Our method assumes that no object mesh models are available during either training or test time. Starting from an initial pose estimate, we use gradient descent to minimize the residual between pixels rendered from a NeRF and pixels in an observed image. In our experiments, we first study 1) how to sample rays during pose refinement for iNeRF to collect informative gradients and 2) how different batch sizes of rays affect iNeRF on a synthetic dataset. We then show that for complex real-world scenes from the LLFF dataset, iNeRF can improve NeRF by estimating the camera poses of novel images and using these images as additional training data for NeRF. Finally, we show iNeRF can perform category-level object pose estimation, including object instances not seen during training, with RGB images by inverting a NeRF model inferred from a single view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源