论文标题

配对观看无监督的图表学习

Pair-view Unsupervised Graph Representation Learning

论文作者

Li, You, Luo, Binli, Gui, Ning

论文摘要

事实证明,低维图嵌入在大图中的各种下游任务中非常有用。这种节点视图提出的主要缺点是它缺乏表达节点之间复合关系的支持,从而导致嵌入过程中一定程度的图形信息丢失。为此,本文pro pos pose paire(对嵌入)是使用“对”的解决方案,比“节点”更高的级别单元作为图形嵌入的核心。因此,一个多自制的自动编码器旨在完成两个借口任务,以重建各个对及其周围环境的特征分布。 Paire具有三个主要优势:1)信息范围超出节点视图的信息,能够保留图表的更丰富信息; 2)简单,配对提供的解决方案是节省时间,储存效率,并且需要越少的超参数; 3)较高的适应性,带有引入的转换器操作员将嵌入到节点嵌入的嵌入式映射器中,对可以有效地用于基于链接的基于链接和基于节点的图形分析中。实验结果表明,Paire在所有四个下游任务中始终胜过基线的状态,尤其是在链接预测和多标签节点分类任务中的重要边缘。

Low-dimension graph embeddings have proved extremely useful in various downstream tasks in large graphs, e.g., link-related content recommendation and node classification tasks, etc. Most existing embedding approaches take nodes as the basic unit for information aggregation, e.g., node perception fields in GNN or con-textual nodes in random walks. The main drawback raised by such node-view is its lack of support for expressing the compound relationships between nodes, which results in the loss of a certain degree of graph information during embedding. To this end, this paper pro-poses PairE(Pair Embedding), a solution to use "pair", a higher level unit than a "node" as the core for graph embeddings. Accordingly, a multi-self-supervised auto-encoder is designed to fulfill two pretext tasks, to reconstruct the feature distribution for respective pairs and their surrounding context. PairE has three major advantages: 1) Informative, embedding beyond node-view are capable to preserve richer information of the graph; 2) Simple, the solutions provided by PairE are time-saving, storage-efficient, and require the fewer hyper-parameters; 3) High adaptability, with the introduced translator operator to map pair embeddings to the node embeddings, PairE can be effectively used in both the link-based and the node-based graph analysis. Experiment results show that PairE consistently outperforms the state of baselines in all four downstream tasks, especially with significant edges in the link-prediction and multi-label node classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源