论文标题
葡萄糖值预测未来五年,在复制内核希尔伯特空间中缺少响应的新框架以及连续的葡萄糖监测技术的使用
Glucose values prediction five years ahead with a new framework of missing responses in reproducing kernel Hilbert spaces, and the use of continuous glucose monitoring technology
论文作者
论文摘要
AEGIS研究通过连续的葡萄糖监测技术(CGM)拥有有关循环葡萄糖纵向变化的独特信息。但是,像纵向医学研究一样,结果变量中存在大量数据。例如,40%的糖基化血红蛋白(A1C)生物标志物数据未提前五年。为了减少此问题的影响,本文提出了一个新的数据分析框架,基于在复制内核希尔伯特空间(RKHS)中学习的新数据分析框架,而缺失的响应允许在不同监督建模任务中捕获可变研究之间的非线性关系。首先,我们将Hilbert-Schmidt的依赖度量扩展到在此上下文中测试统计独立性,引入了新的自举程序,我们证明了一致性。接下来,我们适应或使用现有的可变选择,回归和共形推理的模型,以获取有关宙斯盾数据提前五年的葡萄糖变化的新临床发现。最相关的发现总结如下:i)我们确定与长期葡萄糖进化相关的新因素; ii)我们显示了CGM数据的临床敏感性,以检测葡萄糖代谢的变化; iii)根据患者的基线特征,我们可以根据算法的预期葡萄糖变化来改善临床干预措施。
AEGIS study possesses unique information on longitudinal changes in circulating glucose through continuous glucose monitoring technology (CGM). However, as usual in longitudinal medical studies, there is a significant amount of missing data in the outcome variables. For example, 40 percent of glycosylated hemoglobin (A1C) biomarker data are missing five years ahead. With the purpose to reduce the impact of this issue, this article proposes a new data analysis framework based on learning in reproducing kernel Hilbert spaces (RKHS) with missing responses that allows to capture non-linear relations between variable studies in different supervised modeling tasks. First, we extend the Hilbert-Schmidt dependence measure to test statistical independence in this context introducing a new bootstrap procedure, for which we prove consistency. Next, we adapt or use existing models of variable selection, regression, and conformal inference to obtain new clinical findings about glucose changes five years ahead with the AEGIS data. The most relevant findings are summarized below: i) We identify new factors associated with long-term glucose evolution; ii) We show the clinical sensibility of CGM data to detect changes in glucose metabolism; iii) We can improve clinical interventions based on our algorithms' expected glucose changes according to patients' baseline characteristics.