论文标题
宇宙射线传输,能量损失和在多相星际介质中的影响
Cosmic Ray Transport, Energy Loss, and Influence in the Multiphase Interstellar Medium
论文作者
论文摘要
GEV-能源宇宙射线的批量传播速度受到频繁散射的水力磁波的限制。大多数解释这种限制的星系演化模拟都认为气体已完全离子化,并且宇宙射线与Alfvén波很好地耦合;然而,多相密度不均匀性,经常在银河进化模拟中排序不足,诱导宇宙射线碰撞和由宇宙射线解耦合驱动的电离依赖性转运,并且部分中性气体中的流速度升高。宇宙射线如何导航和影响这种媒介,我们可以通过观测来限制这种运输?在本文中,我们模拟了构图构成理想化的,部分中性云和对数正态分布的团块的宇宙前沿,并具有和不具有电离依赖性转运。通过这些高分辨率模拟,我们将云界面识别为宇宙射线前部可以发展楼梯的压力梯度的关键区域,足以无碰撞产生波,克服离子中性阻尼,并在云上发挥力。我们发现,当包括电离依赖性传输时,冷云的加速仅受到少数因素的阻碍,并且对磁场强度和云维度的依赖性额外的依赖性。我们还探测宇宙射线如何采样背景气体并量化碰撞损失。当包括电离依赖性传输时,辐射伽马射线发射图在质量上有所不同,但是由于冷云中短的宇宙射线停留时间被宇宙射线样品所产生的较高密度所抵消,因此总体发光度仅略有不同。
The bulk propagation speed of GeV-energy cosmic rays is limited by frequent scattering off hydromagnetic waves. Most galaxy evolution simulations that account for this confinement assume the gas is fully ionized and cosmic rays are well-coupled to Alfvén waves; however, multiphase density inhomogeneities, frequently under-resolved in galaxy evolution simulations, induce cosmic ray collisions and ionization-dependent transport driven by cosmic ray decoupling and elevated streaming speeds in partially neutral gas. How do cosmic rays navigate and influence such a medium, and can we constrain this transport with observations? In this paper, we simulate cosmic ray fronts impinging upon idealized, partially neutral clouds and lognormally-distributed clumps, with and without ionization-dependent transport. With these high-resolution simulations, we identify cloud interfaces as crucial regions where cosmic ray fronts can develop a stair-step pressure gradient sufficient to collisionlessly generate waves, overcome ion-neutral damping, and exert a force on the cloud. We find that the acceleration of cold clouds is hindered by only a factor of a few when ionization-dependent transport is included, with additional dependencies on magnetic field strength and cloud dimensionality. We also probe how cosmic rays sample the background gas and quantify collisional losses. Hadronic gamma-ray emission maps are qualitatively different when ionization-dependent transport is included, but the overall luminosity varies by only a small factor, as the short cosmic ray residence times in cold clouds are offset by the higher densities that cosmic rays sample.