论文标题

通过转移学习,使用深度学习对较高的雷诺数字进行深度学习,对强迫汉堡的湍流进行数据驱动的亚网格规模建模

Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning

论文作者

Subel, Adam, Chattopadhyay, Ashesh, Guan, Yifei, Hassanzadeh, Pedram

论文摘要

开发大型涡流模拟(LES)的数据驱动的亚网格尺度(SGS)模型最近受到了极大的关注。尽管有一些成功,尤其是在先验(离线)测试中,但已经确定了在训练有素的数据驱动的SGS模型的后验(在线)测试和概括(即额外化)中包括数值不稳定性的挑战,例如,对较高的Reynolds数字。在这里,使用随机强迫的汉堡湍流作为测试床,我们表明,使用适当预先调节(增强)数据训练的深神经网络可产生稳定且准确的后验les模型。此外,我们表明传递学习可以准确/稳定的概括到雷诺数高10倍的流量。

Developing data-driven subgrid-scale (SGS) models for large eddy simulations (LES) has received substantial attention recently. Despite some success, particularly in a priori (offline) tests, challenges have been identified that include numerical instabilities in a posteriori (online) tests and generalization (i.e., extrapolation) of trained data-driven SGS models, for example to higher Reynolds numbers. Here, using the stochastically forced Burgers turbulence as the test-bed, we show that deep neural networks trained using properly pre-conditioned (augmented) data yield stable and accurate a posteriori LES models. Furthermore, we show that transfer learning enables accurate/stable generalization to a flow with 10x higher Reynolds number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源