论文标题

使用受限的玻尔兹曼机器对分子几何形状进行建模

Using Restricted Boltzmann Machines to Model Molecular Geometries

论文作者

Nekrasov, Peter, Freeze, Jessica, Batista, Victor

论文摘要

可以通过求解Schrodinger方程来获得分子的精确物理描述;但是,这些计算是棘手的,甚至近似值也可能很麻烦。基于经验数据估算原子质潜力的力场也很耗时。本文提出了一种通过利用受限的Boltzmann机器的快速学习能力和代表力来对一组物理参数进行建模的新方法。通过在从头算数据上训练机器,我们可以预测与从头算分布相匹配的分子配置分布中的新数据。在本文中,我们基于TANH激活函数介绍了一个新的RBM,并对具有不同激活函数的RBM进行比较,包括Sigmoid,Gaussian和(Leaky)Relu。最后,我们证明了高斯RBM对水和乙烷等小分子建模的能力。

Precise physical descriptions of molecules can be obtained by solving the Schrodinger equation; however, these calculations are intractable and even approximations can be cumbersome. Force fields, which estimate interatomic potentials based on empirical data, are also time-consuming. This paper proposes a new methodology for modeling a set of physical parameters by taking advantage of the restricted Boltzmann machine's fast learning capacity and representational power. By training the machine on ab initio data, we can predict new data in the distribution of molecular configurations matching the ab initio distribution. In this paper we introduce a new RBM based on the Tanh activation function, and conduct a comparison of RBMs with different activation functions, including sigmoid, Gaussian, and (Leaky) ReLU. Finally we demonstrate the ability of Gaussian RBMs to model small molecules such as water and ethane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源