论文标题
Megahertz引导谐振器的异常频率噪声中的频率多路复用过渡边缘传感器读数
Anomalous Frequency Noise from the Megahertz Channelizing Resonators in Frequency-Division Multiplexed Transition Edge Sensor Readout
论文作者
论文摘要
超导版画的谐振器在低温探测器的多路复用读数中具有广泛的当前和潜在应用。在这里,我们专注于在过渡边缘传感器(TES)BOLOMER中使用的1-5 MHz范围内的LC带通滤波器的读数Simons阵列宇宙微波背景(CMB)实验。在此读取方案中,每个检测器信号振幅调节在检测器随附的LC滤波器的共振频率下进行正弦载波音调。许多调制信号在同一电线对上传输,正交解调恢复了复杂的检测器信号。我们观察到LC过滤器的谐振频率中的噪声,该频率主要作为解调后正交分量的电流依赖性噪声表示。这种噪声具有丰富的现象学,与GHz制度的相似谐振器中观察到的两级系统(TLS)噪声相似。这些相似之处表明了一个共同的物理起源,从而提供了一种新的制度,可以在其中探测潜在的物理学。我们进一步描述了这种噪声与检测器措施之间观察到的非正交性,并提出了实验室的测量,该测量绑定了Simons阵列中预期的敏感性惩罚。从这些结果来看,我们不会预期这种噪音会显着影响Simons阵列的整体敏感性,也不希望它限制未来的实现。
Superconducting lithographed resonators have a broad range of current and potential applications in the multiplexed readout of cryogenic detectors. Here, we focus on LC bandpass filters with resonances in the 1-5 MHz range used in the transition edge sensor (TES) bolometer readout of the Simons Array cosmic microwave background (CMB) experiment. In this readout scheme, each detector signal amplitude-modulates a sinusoidal carrier tone at the resonance frequency of the detector's accompanying LC filter. Many modulated signals are transmitted over the same wire pair, and quadrature demodulation recovers the complex detector signal. We observe a noise in the resonant frequencies of the LC filters, which presents primarily as a current-dependent noise in the quadrature component after demodulation. This noise has a rich phenomenology, bearing many similarities to that of two-level system (TLS) noise observed in similar resonators in the GHz regime. These similarities suggest a common physical origin, thereby offering a new regime in which the underlying physics might be probed. We further describe an observed non-orthogonality between this noise and the detector responsivities, and present laboratory measurements that bound the resulting sensitivity penalty expected in the Simons Array. From these results, we do not anticipate this noise to appreciably affect the overall Simons Array sensitivity, nor do we expect it to limit future implementations.