论文标题
Rapoport - 具有特殊最大脊柱旁层结构的旋转群的Zink空间
Rapoport--Zink spaces for spinor groups with special maximal parahoric level structure
论文作者
论文摘要
在本文中,我们对带有特殊最大旁学(和非高级特殊)水平结构的旋转相似基团的基本降低的Zink空间的基本降低的Zink空间进行了具体描述。此外,我们给出了上述结果的两个应用。其中之一是描述Mod $ p $降低基本基因座的结构 - 旋转型相似组的Shimura品种的基本模型,该模型具有特殊的最大帕拉赫里奇级别结构为$ p $。另一个正在构建He,Li和Zhu结果的变体,该变体在GGP循环的相交多重性上提供了一个公式相关的codimension $ 1 $ rapoport的嵌入 - Zink-Zink Space spinor similitude组。
In this article, we give a concrete description of the underlying reduced subscheme of the Rapoport--Zink spaces for spinor similitude groups with special maximal parahoric (and non-hyperspecial) level structure. Moreover, we give two applications of the above result. One of which is describing the structure of the basic loci of mod $p$ reductions of Kisin--Pappas integral models of Shimura varieties for spinor similitude groups with special maximal parahoric level structure at $p$. The other is constructing a variant of the result of He, Li and Zhu, which gives a formula on the intersection multiplicity of the GGP cycles associated codimension $1$ embeddings of Rapoport--Zink spaces for spinor similitude groups.