论文标题

使用条件生成对抗网络,具有用户定义的属性的数字岩石重建

Digital rock reconstruction with user-defined properties using conditional generative adversarial networks

论文作者

Zheng, Qiang, Zhang, Dongxiao

论文摘要

不确定性无处不在,由于其固有的异质性和缺乏原位测量值,因此在地下岩石中流动。为了以多尺度的方式完成不确定性分析,它是提供足够的岩石样品的先决条件。即使数字岩石技术的出现提供了重现岩石的机会,但由于其高成本,它仍然无法提供大量样品,从而导致了多样化的数学方法的发展。其中,通常使用了两点统计(TPS)和多点统计(MPS),这些统计数据分别包括低阶和高阶统计信息。最近,生成的对抗网络(GAN)变得越来越流行,因为它们可以以出色的视觉和随之而来的地质现实主义重现训练图像。但是,标准gan只能合并来自数据的信息,而没有用于用户定义的属性的接口,因此可能会限制重建样本的代表性。在这项研究中,我们提出了用于数字岩石重建的有条件gan,旨在重现样本不仅与真实的培训数据相似,而且还可以满足用户指定的属性。实际上,提出的框架可以通过直接将岩石图像中的高阶信息与gans方案合并到同时,同时实现MPS和TPS的目标,同时通过调节来保留低阶对应物。我们进行了三个重建实验,结果表明,岩石类型,岩石孔隙度和相关长度可以成功地影响重建的岩石图像。此外,与现有的gan相比,所提出的条件可以同时学习多种岩石类型,因此无形地节省了计算成本。

Uncertainty is ubiquitous with flow in subsurface rocks because of their inherent heterogeneity and lack of in-situ measurements. To complete uncertainty analysis in a multi-scale manner, it is a prerequisite to provide sufficient rock samples. Even though the advent of digital rock technology offers opportunities to reproduce rocks, it still cannot be utilized to provide massive samples due to its high cost, thus leading to the development of diversified mathematical methods. Among them, two-point statistics (TPS) and multi-point statistics (MPS) are commonly utilized, which feature incorporating low-order and high-order statistical information, respectively. Recently, generative adversarial networks (GANs) are becoming increasingly popular since they can reproduce training images with excellent visual and consequent geologic realism. However, standard GANs can only incorporate information from data, while leaving no interface for user-defined properties, and thus may limit the representativeness of reconstructed samples. In this study, we propose conditional GANs for digital rock reconstruction, aiming to reproduce samples not only similar to the real training data, but also satisfying user-specified properties. In fact, the proposed framework can realize the targets of MPS and TPS simultaneously by incorporating high-order information directly from rock images with the GANs scheme, while preserving low-order counterparts through conditioning. We conduct three reconstruction experiments, and the results demonstrate that rock type, rock porosity, and correlation length can be successfully conditioned to affect the reconstructed rock images. Furthermore, in contrast to existing GANs, the proposed conditioning enables learning of multiple rock types simultaneously, and thus invisibly saves computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源