论文标题

通过图形套索选择多个供体仪表以估计每日流时间序列

Selection of multiple donor gauges via Graphical Lasso for estimation of daily streamflow time series

论文作者

Villalba, German A., Liang, Xu, Liang, Yao

论文摘要

在具有不完整记录的站点的每日流时间序列估计中的一个基本挑战是如何有效,有效地从现有量规网络中选择参考或供体计以推断丢失的数据。虽然估计缺少流量时间序列的研究并不是什么新鲜事,但现有方法使用单个参考流量计或采用一组“临时”参考测量表,从而使系统选择的参考测量值是长期存在的开放问题。在这项工作中,引入了一种新颖的方法,该方法促进了从任何给定的水流网络中系统选择的多个参考测量表。这个想法是通过图形Markov建模来数学上表征流流网络的网络相关结构,并进一步将密集网络转换为稀疏连接的网络。从图形模型中产生的基础稀疏图编码来自流量网络的所有参考测量值之间的条件独立条件,从而确定供体计的最佳子集。通过使用具有L1-norm正则化参数和阈值参数的图形LASSO算法发现稀疏性。这两个参数由多目标优化过程确定。此外,采用了图形建模方法来解决量规删除计划决策中的另一个开放问题(例如,由于操作预算限制):通过统计,通过从剩余仪表中估算的估计,要删除哪些仪表可以保证最小的信息损失?我们的基于图形模型的方法通过来自俄亥俄河流域的34个量表网络的每日流量数据进行了证明。

A fundamental challenge in estimations of daily streamflow time series at sites with incomplete records is how to effectively and efficiently select reference or donor gauges from an existing gauge network to infer the missing data. While research on estimating missing streamflow time series is not new, the existing approaches either use a single reference streamflow gauge or employ a set of "ad-hoc" reference gauges, leaving a systematic selection of reference gauges as a long-standing open question. In this work, a novel method is introduced that facilitates systematical selection of multiple reference gauges from any given streamflow network. The idea is to mathematically characterize the network-wise correlation structure of a streamflow network via graphical Markov modeling, and further transforms a dense network into a sparsely connected one. The resulted underlying sparse graph from the graphical model encodes conditional independence conditions among all reference gauges from the streamflow network, allowing determination of an optimum subset of the donor gauges. The sparsity is discovered by using the Graphical Lasso algorithm with an L1-norm regularization parameter and a thresholding parameter. These two parameters are determined by a multi-objective optimization process. Furthermore, the graphical modeling approach is employed to solve another open problem in gauge removal planning decision (e.g., due to operation budget constraints): which gauges to remove would statistically guarantee the least loss of information by estimations from the remaining gauges? Our graphical model-based method is demonstrated with daily streamflow data from a network of 34 gauges over the Ohio River basin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源