论文标题

从$ l $ functions中恢复对有限字段的仿射曲线

Recovering affine curves over finite fields from $L$-functions

论文作者

Booher, Jeremy, Voloch, José Felipe

论文摘要

令$ k $为曲线的功能字段,在有限特征的有限字段上。我们使用$ k $的Galois扩展名的$ l $ functions进行调查,以有效地收回$ k $。当$ k $是删除四个合理点的投影线的功能字段时,我们将展示如何使用射线类字段的$ l $ functions,以有效地恢复投影线的自动形态的删除点。当$ k $是平面曲线的功能字段时,我们将展示如何使用$ k $的Artin-Schreier扩展名有效地恢复该曲线的方程。

Let $K$ be the function field of a curve over a finite field of odd characteristic. We investigate using $L$-functions of Galois extensions of $K$ to effectively recover $K$. When $K$ is the function field of the projective line with four rational points removed, we show how to use $L$-functions of a ray class field to effectively recover the removed points up to automorphisms of the projective line. When $K$ is the function field of a plane curve, we show how to effectively recover the equation of that curve using $L$-functions of Artin-Schreier extensions of $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源