论文标题
使用从标识符开采的元知识来提高神经符号算法中的意图识别
Using Meta-Knowledge Mined from Identifiers to Improve Intent Recognition in Neuro-Symbolic Algorithms
论文作者
论文摘要
在本文中,我们探讨了嵌入在意图标识符中的元知识的使用,以改善对话系统中的意图识别。在分析数千个现实世界聊天机器人以及专业聊天机器人策展人的访谈中,开发人员和领域专家倾向于通过使用原始税收素来识别聊天机器人的意图,即使用元素 - 知识连接高级,符号概念来组织聊天机器人的意图。通过使用能够结合此类原始税项来扩展意图表示的神经符号算法,我们表明这种矿的元知识可以提高意图识别的准确性。在具有数百种专业聊天机器人的意图和示例话语的数据集中,当我们应用这些算法与同一算法的基线相比,在几乎三分之一的聊天机器人中,我们在几乎三分之一的聊天机器人中看到了超过10%的聊天机器人的提高。事实证明,元知识在检测副言的话语中更加相关,在大约一半的聊天机器人中降低了20 \%的错误接受率(远)。该实验表明,这种符号元知识结构可以被神经符号算法有效地开采和使用,显然是通过将要解决问题的高级结构纳入学习过程的高层结构。基于这些结果,我们还讨论了如何使用挖掘元知识的使用可以作为神经符号算法中知识获取的挑战的答案。
In this paper we explore the use of meta-knowledge embedded in intent identifiers to improve intent recognition in conversational systems. As evidenced by the analysis of thousands of real-world chatbots and in interviews with professional chatbot curators, developers and domain experts tend to organize the set of chatbot intents by identifying them using proto-taxonomies, i.e., meta-knowledge connecting high-level, symbolic concepts shared across different intents. By using neuro-symbolic algorithms able to incorporate such proto-taxonomies to expand intent representation, we show that such mined meta-knowledge can improve accuracy in intent recognition. In a dataset with intents and example utterances from hundreds of professional chatbots, we saw improvements of more than 10% in the equal error rate (EER) in almost a third of the chatbots when we apply those algorithms in comparison to a baseline of the same algorithms without the meta-knowledge. The meta-knowledge proved to be even more relevant in detecting out-of-scope utterances, decreasing the false acceptance rate (FAR) in more than 20\% in about half of the chatbots. The experiments demonstrate that such symbolic meta-knowledge structures can be effectively mined and used by neuro-symbolic algorithms, apparently by incorporating into the learning process higher-level structures of the problem being solved. Based on these results, we also discuss how the use of mined meta-knowledge can be an answer for the challenge of knowledge acquisition in neuro-symbolic algorithms.