论文标题
固态材料中的杂交缺陷作为人造分子
Hybridized defects in solid-state materials as artificial molecules
论文作者
论文摘要
二维材料可以用结构上的精度来制作,以接近原子量表,从而实现量子缺陷。这些缺陷经常被描述为人造原子,并且正在出现光学上可调的旋转量子。但是,在晶格存在下,这种人造原子相互的相互作用和耦合是非常不受欢迎的。在这里,我们介绍了固体中人工分子的形成,在控制量子光电材料方面引入了新的自由度。具体而言,在单层六角硼作为模型系统中,我们观察到构型和距离依赖性的解离曲线以及带隙内缺陷轨道的杂交,以键合和抗抗轨道的键合,分布能量从$ \ sim $ \ sim $ \ sim $ \ sim $ 10 mev到1 ev。我们计算$ cis $和$ trans $平面缺陷配对的能量,ch $ _ \ textrm {b} $ - ch $ _ \ ch $ _ \ textrm {b} $与平面缺陷对c $ _ \ textrm {b} $ {b} $ - c $ _ \ c $ _ \ textrm {by by in forts in-evertly-inflect-成对。我们通过改变c $ _ \ textrm {b} $和v $ _ \ textrm {n} $之间的距离来证明这种化学程度的自由度的应用。我们设想利用这种化学的缺陷络合物自由度来精确控制和调整缺陷特性,以朝工程稳健的量子记忆和量子发射器进行量子信息科学。
Two-dimensional materials can be crafted with structural precision approaching the atomic scale, enabling quantum defects-by-design. These defects are frequently described as artificial atoms and are emerging optically-addressable spin qubits. However, interactions and coupling of such artificial atoms with each other, in the presence of the lattice, is remarkably underexplored. Here we present the formation of artificial molecules in solids, introducing a new degree of freedom in control of quantum optoelectronic materials. Specifically, in monolayer hexagonal boron nitride as our model system, we observe configuration- and distance-dependent dissociation curves and hybridization of defect orbitals within the bandgap into bonding and antibonding orbitals, with splitting energies ranging from $\sim$ 10 meV to nearly 1 eV. We calculate the energetics of $cis$ and $trans$ out-of-plane defect pairs CH$_\textrm{B}$-CH$_\textrm{B}$ against an in-plane defect pair C$_\textrm{B}$-C$_\textrm{B}$ and find that in-plane defect pair interacts more strongly than out-of-plane pairs. We demonstrate an application of this chemical degree of freedom by varying the distance between C$_\textrm{B}$ and V$_\textrm{N}$ of C$_\textrm{B}$V$_\textrm{N}$ and observe changes in the predicted peak absorption wavelength from the visible to the near-infrared spectral band. We envision leveraging this chemical degree of freedom of defect complexes to precisely control and tune defect properties towards engineering robust quantum memories and quantum emitters for quantum information science.