论文标题

关于将策略作为对抗防御的局限性

On the Limitations of Denoising Strategies as Adversarial Defenses

论文作者

Niu, Zhonghan, Chen, Zhaoxi, Li, Linyi, Yang, Yubin, Li, Bo, Yi, Jinfeng

论文摘要

随着对机器学习模型的对抗性攻击引起了人们的关注,因此提出了许多基于Denoising的防御方法。在本文中,我们通过数据降解和重建(表示为$ f+$ inverse $ f $,$ f-if $ framework)以对称转换的形式总结和分析防御策略。特别是,我们从三个方面(即分别在空间域,频域和潜在空间中分别降解)对这些脱索策略进行了分类。通常,防御是在整个对抗性示例上进行的,图像和扰动都经过修改,因此很难说出它如何防御扰动。为了以直觉的方式评估这些脱氧策略的鲁棒性,我们直接应用它们来防御对抗噪声本身(假设我们已经获得了所有这些噪声),从而使我们免于牺牲良性准确性。令人惊讶的是,我们的实验结果表明,即使消除了每个维度中的大多数扰动,仍然很难获得令人满意的鲁棒性。基于上述发现和分析,我们提出了特征域中不同频段的自适应压缩策略,以提高鲁棒性。我们的实验结果表明,自适应压缩策略使该模型能够更好地抑制对抗性扰动,并改善与现有的Denoising策略相比的鲁棒性。

As adversarial attacks against machine learning models have raised increasing concerns, many denoising-based defense approaches have been proposed. In this paper, we summarize and analyze the defense strategies in the form of symmetric transformation via data denoising and reconstruction (denoted as $F+$ inverse $F$, $F-IF$ Framework). In particular, we categorize these denoising strategies from three aspects (i.e. denoising in the spatial domain, frequency domain, and latent space, respectively). Typically, defense is performed on the entire adversarial example, both image and perturbation are modified, making it difficult to tell how it defends against the perturbations. To evaluate the robustness of these denoising strategies intuitively, we directly apply them to defend against adversarial noise itself (assuming we have obtained all of it), which saving us from sacrificing benign accuracy. Surprisingly, our experimental results show that even if most of the perturbations in each dimension is eliminated, it is still difficult to obtain satisfactory robustness. Based on the above findings and analyses, we propose the adaptive compression strategy for different frequency bands in the feature domain to improve the robustness. Our experiment results show that the adaptive compression strategies enable the model to better suppress adversarial perturbations, and improve robustness compared with existing denoising strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源