论文标题
尤其是与全球保护法的相互作用强体共振气体与重型离子碰撞中事件波动的全球保护定律
Particlization of an interacting hadron resonance gas with global conservation laws for event-by-event fluctuations in heavy-ion collisions
论文作者
论文摘要
在波动测量的背景下,我们将QCD流体在流体动力学阶段的结束时重新审视了QCD流体的问题和共振。因此,现有方法采样了理想的强子共振气体,因此,由于QCD动力学(例如手性转变或QCD临界点),它们不会捕获大型典型波动的非繁殖性质。我们通过将特定面积的超浮雕划分为当地盛大的火球,从而解决了该问题,这些火球填充了受全球保护法约束的时空速度轴。该程序允许量化全球保护定律,体积波动,热涂抹和共振衰减的影响,对各种快速接收的波动测量结果,并可以用于重离子碰撞的流体动力学模拟中。作为第一个应用,我们使用与晶格QCD敏感性相匹配的排除体积的强体共振气体模型研究了LHC重型离子碰撞中的事件波动,重点是(Pseudo)快速性接受依赖性,净baryon,Net Baryon,Net Proton和Net Charge累积量。我们指出,净质子和净baryon累积比率之间的巨大差异,这使得两者之间的直接比较。我们观察到,在LHC处的净电荷波动的现有实验数据相对于HADRONIC描述显示出强烈的抑制作用。
We revisit the problem of particlization of a QCD fluid into hadrons and resonances at the end of the fluid dynamical stage in relativistic heavy-ion collisions in a context of fluctuation measurements. The existing methods sample an ideal hadron resonance gas, therefore, they do not capture the non-Poissonian nature of the grand-canonical fluctuations, expected due to QCD dynamics such as the chiral transition or QCD critical point. We address the issue by partitioning the particlization hypersurface into locally grand-canonical fireballs populating the space-time rapidity axis that are constrained by global conservation laws. The procedure allows to quantify the effect of global conservation laws, volume fluctuations, thermal smearing and resonance decays on fluctuation measurements in various rapidity acceptances, and can be used in fluid dynamical simulations of heavy-ion collisions. As a first application, we study event-by-event fluctuations in heavy-ion collisions at the LHC using an excluded volume hadron resonance gas model matched to lattice QCD susceptibilities, with a focus on (pseudo)rapidity acceptance dependence of net baryon, net proton, and net charge cumulants. We point out large differences between net proton and net baryon cumulant ratios that make direct comparisons between the two unjustified. We observe that the existing experimental data on net-charge fluctuations at the LHC shows a strong suppression relative to a hadronic description.