论文标题

利用对称性和渐进式精炼,以进行暂停的学生lyot coronagraph设计

Exploiting symmetries and progressive refinement for apodized pupil Lyot coronagraph design

论文作者

Por, Emiel H., Soummer, Rémi, Noss, James, Laurent, Kathryn St.

论文摘要

现代冠冕设计依赖于高级大规模优化过程,这些过程需要越来越多的计算资源。在本文中,我们将自己限制在暂停的学生lyot coronagraph(APLC)的设计中。为了为未来的巨型太空望远镜生产APLC设计,我们需要对Apodizer进行精细的采样来解决望远镜学生中的所有小特征,例如段间隙。此外,我们要求Coronagraph在宽带光中运行,并对Lyot停止的小小给对准不敏感。对于将来的设计,我们希望包括对低阶畸变和有限恒星直径的被动抑制。仅对于问题矩阵,这种优化的内存要求将超过多个th。 因此,我们希望减少变量和约束的数量,以最大程度地减少问题矩阵的大小。我们展示了如何在完整的优化问题中表达学生和Lyot停止中的对称性,并允许删除变量和约束。每个镜像对称性将问题大小减少了四倍。其次,我们介绍了渐进式改进,该精炼使用低分辨率优化作为更高分辨率的先验。这使我们可以从高分辨率优化中删除大多数变量。这两个改进总之需要的计算机存储器最多需要少256倍,并增加了相应的速度。这可以更好地探索焦点面膜和lyot-stop几何形状的相位空间,并更容易模拟对Lyot-Stop未对准的敏感性。此外,现在可以通过其本地制造分辨率对apodizer进行优化。

Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot Coronagraphs (APLCs). To produce APLC designs for future giant space telescopes, we require a fine sampling for the apodizer to resolve all small features, such as segment gaps, in the telescope pupil. Additionally, we require the coronagraph to operate in broadband light and be insensitive to small misalignments of the Lyot stop. For future designs we want to include passive suppression of low-order aberrations and finite stellar diameters. The memory requirements for such an optimization would exceed multiple terabytes for the problem matrix alone. We therefore want to reduce the number of variables and constraints to minimize the size of the problem matrix. We show how symmetries in the pupil and Lyot stop are expressed in the complete optimization problem, and allow removal of both variables and constraints. Each mirror symmetry reduces the problem size by a factor of four. Secondly, we introduce progressive refinement, which uses low-resolution optimizations as a prior for higher resolutions. This lets us remove the majority of variables from the high-resolution optimization. Together these two improvements require up to 256x less computer memory, with a corresponding speed increase. This allows for greater exploration of the phase space of the focal-plane mask and Lyot-stop geometry, and easier simulation of sensitivity to Lyot-stop misalignments. Moreover, apodizers can now be optimized at their native manufactured resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源