论文标题

重力边缘模式,坐标轨道和流体动力学

Gravitational Edge Modes, Coadjoint Orbits, and Hydrodynamics

论文作者

Donnelly, William, Freidel, Laurent, Moosavian, Seyed Faroogh, Speranza, Antony J.

论文摘要

有限次区域中的一般相对性的相位空间的特征在于在Codimension-2边界处定位的边缘模式,并在无限二维对称组下转换。该对称代数的量化被认为是量子重力的重要方面。为了迈向量化的一步,我们将该组的正区间旋风完全分类用于拓扑上是2个球体的边界。这种分类与Wigner著名的Poincaré集团表示分类相似,因为这两个群体都有半领产品的结构。我们发现总面积是代数的卡西米尔,类似于庞加莱集团的质量。可以从边界表面的正常束的曲率构建进一步的无限卡西米尔家族。这些是小群体的不变性,这是一个保护区域的差异,是自旋的类似物。此外,我们表明流体动力学的对称组似乎是一般相对性的角对称性的降低。两组的共同连接轨道都通过相同的一组不变式分类,在流体动力学组的情况下,不变性被解释为流体的概括。

The phase space of general relativity in a finite subregion is characterized by edge modes localized at the codimension-2 boundary, transforming under an infinite-dimensional group of symmetries. The quantization of this symmetry algebra is conjectured to be an important aspect of quantum gravity. As a step towards quantization, we derive a complete classification of the positive-area coadjoint orbits of this group for boundaries that are topologically a 2-sphere. This classification parallels Wigner's famous classification of representations of the Poincaré group since both groups have the structure of a semidirect product. We find that the total area is a Casimir of the algebra, analogous to mass in the Poincaré group. A further infinite family of Casimirs can be constructed from the curvature of the normal bundle of the boundary surface. These arise as invariants of the little group, which is the group of area-preserving diffeomorphisms, and are the analogues of spin. Additionally, we show that the symmetry group of hydrodynamics appears as a reduction of the corner symmetries of general relativity. Coadjoint orbits of both groups are classified by the same set of invariants, and, in the case of the hydrodynamical group, the invariants are interpreted as the generalized enstrophies of the fluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源