论文标题
在$ \ ell_ \ infty $ -grothendieck子空间上
On $\ell_\infty$-Grothendieck subspaces
论文作者
论文摘要
如果$ c_0 \ subset s $(因此,$ \ ell_ \ ell_ \ ell_ \ elfty \ subset s s^{****} $ IN $ contraction s s $ c_0 \ subset s $(因此, $σ(s^*,\ ell_ \ infty)$ - 融合。在这里,我们提供了$ \ ell_ \ infty $的封闭子空间的示例,其中包含$ c_0 $的$ c_0 $,或不属于$ \ ell_ \ ell_ \ infty $ -grothendieck。
A closed subspace $S$ of $\ell_\infty$ is said to be a \emph{$\ell_\infty$-Grothendieck subspace} if $c_0\subset S$ (hence $\ell_\infty\subset S^{**}$) and every $σ(S^*,S)$-convergent sequence in $S^*$ is $σ(S^*,\ell_\infty)$-convergent. Here we give examples of closed subspaces of $\ell_\infty$ containing $c_0$ which are or fail to be $\ell_\infty$-Grothendieck.