论文标题

通过离散的PDE和半分化最佳传输在周期图中急剧离散的等级不平等现象

Sharp discrete isoperimetric inequalities in periodic graphs via discrete PDE and Semidiscrete Optimal Transport

论文作者

Petrache, Mircea, Gomez, Matias

论文摘要

我们通过离散的PDE和半差异的最佳传输制定了基于校准论点的标准,以发现形式的尖锐等等不平等现象$(\sharpΩ)^{d-1} {d-1} \ le c(\ sharp \ sharp \ overright \ overright arrow {\partialΩ}) $ \ overrightRarow {\partialΩ} $是$ω$的方向边界,也是最佳等级形状$ω$。该方法是最佳传输和ABP方法证明在连续体中有效的离散对应物,并回答了在hamamuki \ cite {hamamuki}中出现的问题,将这项工作扩展到对矩形网格的有效作品,包括较大的图形,包括偶尔的图形对相等体积的简单网格。我们还将该问题与Semidiscrete最佳运输中的Aleksandrov解决方案联系起来。在连续案例中,在以前的作品中使用的几何弧度不平等以及$ \ \ \ \ m rathbb z^d $ graph案的作用现在是由几何细胞竞争常数播放的,其中优化问题像Minkowski在Minkowski对他对CONVEX POLYHEDRA的古典定理的证明中一样。最后,我们研究了相关离散的Neumann边界问题中的最佳常数,并提出了一系列可能的方向,以进一步分类离散的边缘 - 术常数和形状。

We develop criteria based on a calibration argument via discrete PDE and semidiscrete optimal transport, for finding sharp isoperimetric inequalities of the form $(\sharp Ω)^{d-1} \le C (\sharp \overrightarrow{\partialΩ})^d$ where $Ω$ is a subset of vertices of a graph and $\overrightarrow{\partialΩ}$ is the oriented edge-boundary of $Ω$, as well as the optimum isoperimetric shapes $Ω$. The method is a discrete counterpart to Optimal Transport and ABP method proofs valid in the continuum, and answers a question appearing in Hamamuki \cite{hamamuki}, extending that work valid for rectangular grids, to a larger class of graphs, including graphs dual to simplicial meshes of equal volume. We also connect the problem to the theory Voronoi tessellations and of Aleksandrov solutions from semidiscrete optimal transport. The role of the geometric-arithmetic inequality that was used in previous works in the continuum case and in the $\mathbb Z^d$-graph case is now played by a geometric cell-optimization constant, where the optimization problem is like in Minkowski's proof of his classical theorem for convex polyhedra. Finally, we study the optimal constant in the related discrete Neumann boundary problem, and present a series of possible directions for a further classification of discrete edge-isoperimetric constants and shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源