论文标题

朱莉娅的佐里希地图

Julia sets of Zorich maps

论文作者

Tsantaris, Athanasios

论文摘要

指数家族的朱莉娅集合$e_κ:z \mapstoκe^z $,$κ> 0 $在$κ> 1/e $本质上是Misiurewicz的整个复杂平面。后来,Devaney和Krych表明,朱莉娅套装是$ 0 <κ\ leq1/e $的,是成对的偏离简单曲线的无数结合,趋向于无穷大。 Bergweiler概括了Devaney和Krych的结果,用于指数图的三维类似物,称为Zorich Map。我们证明,具有对称性的某些Zorich地图的朱莉娅集是整个$ \ mathbb {r}^3 $概括Misiurewicz的结果。此外,我们表明Zorich地图的周期点在$ \ Mathbb {r}^3 $中密集,并且其逃逸集已连接,从而概括了REMPE的结果。我们还概括了Ghys,Sullivan和Goldberg定理的指数动力学。

The Julia set of the exponential family $E_κ:z\mapstoκe^z$, $κ>0$ was shown to be the entire complex plane when $κ>1/e$ essentially by Misiurewicz. Later, Devaney and Krych showed that for $0<κ\leq1/e$ the Julia set is an uncountable union of pairwise disjoint simple curves tending to infinity. Bergweiler generalized the result of Devaney and Krych for a three dimensional analogue of the exponential map called the Zorich map. We show that the Julia set of certain Zorich maps with symmetry is the entire $\mathbb{R}^3$ generalizing Misiurewicz's result. Moreover, we show that the periodic points of the Zorich map are dense in $\mathbb{R}^3$ and that its escaping set is connected, generalizing a result of Rempe. We also generalize a theorem of Ghys, Sullivan and Goldberg on the measurable dynamics of the exponential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源