论文标题

自动诊断胸部X光片的气胸:系统文献综述

Automatic Diagnosis of Pneumothorax from Chest Radiographs: A Systematic Literature Review

论文作者

Iqbal, Tahira, Shaukat, Arslan, Akram, Usman, Mustansar, Zartasha

论文摘要

在各种医学成像工具中,胸部X光片是用于检测胸部病理的最重要,最广泛使用的诊断工具。正在进行研究以提出强大的自动诊断工具,以检测胸部X光片的病理。人工智能技术尤其是深度学习方法论已经在自动化医学领域时给出了有希望的结果。已经进行了大量研究,用于自动和快速检测胸部X光片的气胸,同时提出基于人工智能和机器学习技术的几个框架。这项研究总结了现有的文献,用于自动检测胸部X射线的气胸,并描述可用的胸部X光片数据集。文献的比较分析也是基于善良的。现有文献的局限性以及研究差距也被给予进一步研究。本文简要概述了目前的气胸检测工作,以帮助研究人员选择最佳方法进行未来的研究。

Among various medical imaging tools, chest radiographs are the most important and widely used diagnostic tool for detection of thoracic pathologies. Research is being carried out in order to propose robust automatic diagnostic tool for detection of pathologies from chest radiographs. Artificial Intelligence techniques especially deep learning methodologies have found to be giving promising results in automating the field of medicine. Lot of research has been done for automatic and fast detection of pneumothorax from chest radiographs while proposing several frameworks based on artificial intelligence and machine learning techniques. This study summarizes the existing literature for the automatic detection of pneumothorax from chest x-rays along with describing the available chest radiographs datasets. The comparative analysis of the literature is also provided in terms of goodness. Limitations of the existing literature along with the research gaps is also given for further investigation. The paper provides a brief overview of the present work for pneumothorax detection for helping the researchers in selection of optimal approach for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源