论文标题

双环网:一个循环一致的双域卷积神经网络框架检测部分放电

Dual-CyCon Net: A Cycle Consistent Dual-Domain Convolutional Neural Network Framework for Detection of Partial Discharge

论文作者

Zunaed, Mohammad, Nath, Ankur, Rahman, Md. Saifur

论文摘要

在过去的十年中,研究人员一直在研究由盖帽传输线中的部分放电(PD)带有覆盖导体或电气设备(例如各种行业使用的发电机和电动机)引起的绝缘崩溃的严重程度。开发有效的部分放电系统可以导致维护上的大量节省,并防止电源中断。传统方法依靠手工制作的功能和域专业知识来识别电流中的部分放电模式。近年来,已经提出了许多基于数据驱动的深度学习方法,以消除这些临时功能提取。但是,这些方法中的大多数要么在时域或频域中运行。已经开发出许多研究方法来从RAW PD传感器数据中产生相位分辨的部分放电(PRPD)模式。这些PRPD图表明,在交替的电波形的正极和负半循环中发生的部分放电活动之间存在相关性。但是,在基于深度学习的方法中,半循环之间的这种相关标准仍未探索。这项工作提出了一个新型的基于特征融合的双旋转网络,该网络可以在一个内聚力的框架中利用所有时间,频率和相域特征来进行联合学习。我们提出的循环一致性损失利用了交替的电信号正和负半周期之间的任何关系,以校准模型的灵敏度。这种损失探讨了自行车不变的PD特异性特征,使模型能够学习更强大的噪声引起的PD检测功能。从高频电压传感器到检测受损的电源线的公共现实世界噪声测量的案例研究已经达到了0.8455的最新MCC得分。

In the last decade, researchers have been investigating the severity of insulation breakdown caused by partial discharge (PD) in overhead transmission lines with covered conductors or electrical equipment such as generators and motors used in various industries. Developing an effective partial discharge detection system can lead to significant savings on maintenance and prevent power disruptions. Traditional methods rely on hand-crafted features and domain expertise to identify partial discharge patterns in the electrical current. Many data-driven deep learning-based methods have been proposed in recent years to remove these ad hoc feature extraction. However, most of these methods either operate in the time-domain or frequency-domain. Many research approaches have been developed to generate phase-resolved partial discharge (PRPD) patterns from raw PD sensor data. These PRPD diagrams suggest a correlation between partial discharge activities occurring in an alternating electrical waveform's positive and negative half-cycles. However, this correlation criterion between half-cycles has been remained unexplored in deep learning-based methods. This work proposes a novel feature-fusion-based Dual-CyCon Net that can utilize all time, frequency, and phase domain features for joint learning in one cohesive framework. Our proposed cycle-consistency loss exploits any relation between an alternating electrical signal's positive and negative half-cycles to calibrate the model's sensitivity. This loss explores cycle-invariant PD-specific features, enabling the model to learn more robust, noise-invariant features for PD detection. A case study of our proposed framework on a public real-world noisy measurement from high-frequency voltage sensors to detect damaged power lines has achieved a state-of-the-art MCC score of 0.8455.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源