论文标题
Li $^+$+H $^ - $/d $^ - $^ - $^$^+$+$+h $^ - $/d $^ - $ collisions中的共同中和:实验结果对非LTE模型的含义
Mutual neutralisation in Li$^+$+H$^-$/D$^-$ and Na$^+$+H$^-$/D$^-$ collisions: Implications of experimental results for non-LTE modelling of stellar spectra
论文作者
论文摘要
合并束仪器的进步允许对li $^+$和na $^+$ ions碰撞的相互中和过程进行实验研究,该过程均低于1 ev。这些实验结果对h $^ - $的Li $^+$和Na $^+$的Mn过程的理论预测对h $^ - $的理论预测进行了限制,这对于晚期恒星中Li和Na Spectra的非LTE建模很重要。我们将实验结果与通常用于计算MN过程的方法的计算,即完全量子(FQ)方法以及基于原子轨道(LCAO)(LCAO)和半经验(SE)方法的线性组合的渐近模型方法。发现FQ计算与实验的总体总体最佳相比,其次是LCAO,而SE接近了。实验结果与理论计算一起,使我们能够研究对建模光谱和衍生丰度的影响及其因MN速率不确定性引起的不确定性。在大的一维模型大气和较小的3D模型中进行的数值实验表明,忽略Mn可能会导致高达0.1 dex(26 \%)在低金属性下的li误差(26 \%),而在高金属的情况下,NA的差异为0.2 dex(58 \%),而对高金属的速度则是相关的,而相关的速率则是相关的率,而无限率的速度则是限制的,而无限率则是限制的。小于0.01〜DEX(2 \%)。简单原子的这一协议使FQ,LCAO和SE模型方法具有信心,以便能够以恒星大气中非LTE建模所需的准确性来预测MN。
Advances in merged-beams instruments have allowed experimental studies of the mutual neutralisation (MN) processes in collisions of both Li$^+$ and Na$^+$ ions with D$^-$ at energies below 1 eV. These experimental results place constraints on theoretical predictions of MN processes of Li$^+$ and Na$^+$ with H$^-$, important for non-LTE modelling of Li and Na spectra in late-type stars. We compare experimental results with calculations for methods typically used to calculate MN processes, namely the full quantum (FQ) approach, and asymptotic model approaches based on the linear combination of atomic orbitals (LCAO) and semi-empirical (SE) methods for deriving couplings. It is found that FQ calculations compare best overall with the experiments, followed by the LCAO, and the SE approaches. The experimental results together with the theoretical calculations, allow us to investigate the effects on modelled spectra and derived abundances and their uncertainties arising from uncertainties in the MN rates. Numerical experiments in a large grid of 1D model atmospheres, and a smaller set of 3D models, indicate that neglect of MN can lead to abundance errors of up to 0.1 dex (26\%) for Li at low metallicity, and 0.2 dex (58\%) for Na at high metallicity, while the uncertainties in the relevant MN rates as constrained by experiments correspond to uncertainties in abundances of much less than 0.01~dex (2\%). This agreement for simple atoms gives confidence in the FQ, LCAO and SE model approaches to be able to predict MN with the accuracy required for non-LTE modelling in stellar atmospheres.