论文标题
被动$ \ Mathcal {pt} $ - 对称floquet-coupler
A Passive $\mathcal{PT}$-Symmetric Floquet-Coupler
论文作者
论文摘要
基于开放系统的liouville空间公式,我们为两个耦合的光学波导的量子主方程提供了一种解决方案,并具有不同的损失。马尔可夫损失的周期性调制产生了一个被动的$ \ MATHCAL {pt} $ - 对称的浮点系统,在共鸣时,它显示出$ \ Mathcal {pt} $对称性所需损失的大幅减少。我们展示了多光态状态的这种过渡,我们展示了如何通过一组浴缸模式的储层工程来物理实现调制损失。
Based on a Liouville-space formulation of open systems, we present a solution to the quantum master equation of two coupled optical waveguides with varying loss. The periodic modulation of the Markovian loss of one of them yields a passive $\mathcal{PT}$-symmetric Floquet system that, at resonance, shows a strong reduction of the required loss for the $\mathcal{PT}$ symmetry to be broken. We showcase this transition for a multi-photon state, and we show how to physically implement the modulated loss with reservoir engineering of a set of bath modes.