论文标题
通过学习时空失真模型,hdr denoising和Debluring
HDR Denoising and Deblurring by Learning Spatio-temporal Distortion Models
论文作者
论文摘要
我们寻求从双曝光传感器中重建尖锐和无噪声的高动力范围(HDR)视频,该视频在不同的像素列中记录了不同的低动力范围(LDR)信息:奇数列提供了低曝光,鲜明但嘈杂的信息;甚至列都以较少的嘈杂,高曝光,但动作毛发数据的数据进行补充。以前的LDR工作学会了由成对的干净和扭曲的图像监督的DeBlur和DeBlur和Denoise(扭曲 - >清洁)。遗憾的是,捕获失真的传感器读数是耗时的。同样,缺乏干净的HDR视频。我们建议一种克服这两个局限性的方法。首先,我们学习了一个不同的功能:清洁>扭曲,该功能生成包含相关像素噪声的样品以及行和列噪声,以及来自低数量的清洁传感器读数的运动模糊。其次,由于没有足够的干净HDR视频,我们设计了一种从stead中学习的方法。我们的方法与几个强大的基线相比,可以提高现有方法在我们的数据上进行重新培训。结合空间和时间超分辨率,它可以启用诸如低噪声或模糊的重新照明的应用。
We seek to reconstruct sharp and noise-free high-dynamic range (HDR) video from a dual-exposure sensor that records different low-dynamic range (LDR) information in different pixel columns: Odd columns provide low-exposure, sharp, but noisy information; even columns complement this with less noisy, high-exposure, but motion-blurred data. Previous LDR work learns to deblur and denoise (DISTORTED->CLEAN) supervised by pairs of CLEAN and DISTORTED images. Regrettably, capturing DISTORTED sensor readings is time-consuming; as well, there is a lack of CLEAN HDR videos. We suggest a method to overcome those two limitations. First, we learn a different function instead: CLEAN->DISTORTED, which generates samples containing correlated pixel noise, and row and column noise, as well as motion blur from a low number of CLEAN sensor readings. Second, as there is not enough CLEAN HDR video available, we devise a method to learn from LDR video in-stead. Our approach compares favorably to several strong baselines, and can boost existing methods when they are re-trained on our data. Combined with spatial and temporal super-resolution, it enables applications such as re-lighting with low noise or blur.