论文标题
Metaaugment:样本感知数据增强政策学习
MetaAugment: Sample-Aware Data Augmentation Policy Learning
论文作者
论文摘要
自动化数据增强在图像识别方面表现出色。现有的作品搜索数据集级的增强策略而不考虑各个样本变化,这很可能是最佳的。另一方面,对不同样本的不同政策来天真地增加了计算成本。在本文中,我们通过将其作为样本重新加权问题来有效地学习样本感知数据增强策略。具体而言,增强策略网络将转换和相应的增强图像作为输入进行,并输出权重调整任务网络计算的增强图像损失。在训练阶段,任务网络最大程度地减少了增强培训图像的加权损失,而政策网络则最大程度地减少了通过元学习验证设置的任务网络丢失。从理论上讲,我们证明了训练程序的收敛性,并进一步得出了确切的收敛速度。在包括CIFAR-10/100,Omniglot和Imagenet在内的广泛使用的基准上实现了卓越的性能。
Automated data augmentation has shown superior performance in image recognition. Existing works search for dataset-level augmentation policies without considering individual sample variations, which are likely to be sub-optimal. On the other hand, learning different policies for different samples naively could greatly increase the computing cost. In this paper, we learn a sample-aware data augmentation policy efficiently by formulating it as a sample reweighting problem. Specifically, an augmentation policy network takes a transformation and the corresponding augmented image as inputs, and outputs a weight to adjust the augmented image loss computed by a task network. At training stage, the task network minimizes the weighted losses of augmented training images, while the policy network minimizes the loss of the task network on a validation set via meta-learning. We theoretically prove the convergence of the training procedure and further derive the exact convergence rate. Superior performance is achieved on widely-used benchmarks including CIFAR-10/100, Omniglot, and ImageNet.