论文标题
双场理论和伪苏翼对称性
Double Field Theory and Pseudo-Supersymmetry
论文作者
论文摘要
通过一阶BPS方程控制的超对称性骨背景可以通过放松超出二次费米术语水平的超级级别的闭合的要求来在更广泛的环境中实现。可以在任意的时空维度定义所得的伪苏匹配理论。我们在这里专注于$ {\ cal n} = 1 $ pseudo-supersymmememmemememmememmememmememmemetric扩展,该动作是几年前构建的。在本文中,我们以广义几何形状的语言重新铸造了这些。更确切地说,我们根据O($ d $)$ \ times $ o($ d $)协变量来构建动作和相应的超对称转换规则,我们讨论了对具有广义$ g $ structure的流形的一致截断。作为明确的示例,我们讨论了Minkowski $ \ times g $真空解决方案及其相应的伪supersymmetry。我们还简要讨论了挤压的组歧管解决方案,其中包括一个lorentzian签名指标的示例,上面是集团歧管$ g $。
Supersymmetric bosonic backgrounds governed by first-order BPS equations, can be realised in a much broader setting by relaxing the requirement of closure of the superalgebra beyond the level of quadratic fermion terms. The resulting pseudo-supersymmetric theories can be defined in arbitrary spacetime dimensions. We focus here on the ${\cal N}=1$ pseudo-supersymmetric extensions of the arbitrary-dimensional bosonic string action, which were constructed a few years ago. In this paper, we recast these in the language of generalised geometry. More precisely, we construct the action and the corresponding supersymmetry transformation rules in terms of O($D$)$\times$O($D$) covariant derivatives, and we discuss consistent truncations on manifolds with generalised $G$-structure. As explicit examples, we discuss Minkowski$\times G$ vacuum solutions and their corresponding pseudo-supersymmetry. We also briefly discuss squashed group manifold solutions, including an example with a Lorentzian signature metric on the group manifold $G$.