论文标题
$ \ mathcal {n} = 4 $ sym的限制和分级分区功能
Confinement and Graded Partition Functions for $\mathcal{N}=4$ SYM
论文作者
论文摘要
在高温下,具有狭窄相位的量学理论倾向于在高温下解氨芬。在某些情况下,例如,在超对称理论中,如果分区功能包括$(-1)^f $的等级,则可以在所有温度下持续限制。如果可以定义分区函数,这些函数在没有等级和$(-1)^f $等级之间平稳插值时,自然要问是否还有其他分级选择的效果与$(-1)^f $相同的效果。我们探讨了$ \ Mathcal {n} = 4 $ sym on $ s^1 \ times s^3 $在大型和大耦合时的工作方式。我们找到了连续的分级参数范围的证据,这些参数可在大耦合下保留所有温度的限制,而在小耦合下仅在一组离散的等级组合下保留限制。
Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by $(-1)^F$. When it is possible to define partition functions which smoothly interpolate between no grading and $(-1)^F$ grading, it is natural to ask if there are other choices of grading that have the same effect as $(-1)^F$ on confinement. We explore how this works for $\mathcal{N}=4$ SYM on $S^1\times S^3$ in the large $N$ limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.