论文标题
横向壁驱动的准二维MHD流中的湍流过渡
Transition to turbulence in quasi-two-dimensional MHD flow driven by lateral walls
论文作者
论文摘要
该手稿已被接受在物理审查流体中的出版,请参见https://journals.ops.org/prfluids/accepted/d5074s28j6b1190501905012b7cb7cb06505e8f2149ddd5f20。 这项工作调查了在三维结构域中向湍流过渡的机制,在三维结构域中,在平面外方向上流量的变化比任何平面内变异都弱得多。这是使用带有移动侧壁和正交磁场的管道中的准二维磁性流动力流的模型来实现的。在这种环境中,禁止使用高度三维的传统湍流途径。为了阐明与准二维湍流跃迁相关的其余机制,基本流动中的磁场强度和反对称性的程度有所不同,后者通过侧向管壁的相对运动。由于TS不稳定性的旋转迹象和破坏性的干扰,因此引入了基本流量的任何数量的反对称驱动器驱动临界雷诺数无限。但是,磁场强度的增加限制了不稳定性之间的相互作用,从而允许有限的临界雷诺数。瞬态生长仅温和地取决于基本流量,而摩擦参数的差异可以忽略不计$ h \ gtrsim 30 $。以随机噪声启动的直接数值模拟表明,对于$ h \ leq 1 $,超临界指数增长会导致饱和,但不会导致湍流。对于高$ 3 \ leq H \ leq 10 $,发生湍流过渡,并保持在$ h = 10 $。对于$ h \ geq 30 $,动荡的过渡仍然发生,但由于动荡状态迅速崩溃,但寿命很短。此外,对于$ h \ geq 3 $,确定了一个惯性子量值,而扰动能量表现出$ -5/3 $的功率法对波数的依赖。
This manuscript has been accepted for publication in Physical Review Fluids, see https://journals.aps.org/prfluids/accepted/d5074S28J6b11905012b7cb06505e8f2149dd5f20. This work investigates the mechanisms that underlie transitions to turbulence in a three-dimensional domain in which the variation of flow quantities in the out-of-plane direction is much weaker than any in-plane variation. This is achieved using a model for the quasi-two-dimensional magnetohydrodynamic flow in a duct with moving lateral walls and an orthogonal magnetic field. In this environment, conventional subcritical routes to turbulence, which are highly three-dimensional, are prohibited. To elucidate the remaining mechanisms involved in quasi-two-dimensional turbulent transitions, the magnetic field strength and degree of antisymmetry in the base flow are varied, the latter via the relative motion of the lateral duct walls. Introduction of any amount of antisymmetry to the base flow drives the critical Reynolds number infinite, as the TS instabilities take on opposite signs of rotation, and destructively interfere. However, an increasing magnetic field strength limits interaction between the instabilities, permitting finite critical Reynolds numbers. The transient growth only mildly depends on the base flow, with negligible differences for friction parameters $H \gtrsim 30$. Direct numerical simulations, initiated with random noise, indicate that for $H \leq 1$, supercritical exponential growth leads to saturation, but not turbulence. For higher $3 \leq H \leq 10$, a turbulent transition occurs, and is maintained at $H=10$. For $H \geq 30$, the turbulent transition still occurs, but is short lived, as the turbulent state quickly collapses. In addition, for $H \geq 3$, an inertial subrange is identified, with the perturbation energy exhibiting a $-5/3$ power law dependence on wave number.