论文标题
$ 0 $ -HECKE模块用于年轻行图的准对称Schur功能
$0$-Hecke modules for Young row-strict quasisymmetric Schur functions
论文作者
论文摘要
我们构建了$ 0 $ -HECKE代数的模块,其在准对称特征图下的图像是年轻的行图式式对称Schur函数。这提供了对准对称函数的此基础的代表理论解释,回答了Mason和Niese(2015)的问题。此外,我们对这些模块不可分解的何时进行分类。
We construct modules of the $0$-Hecke algebra whose images under the quasisymmetric characteristic map are the Young row-strict quasisymmetric Schur functions. This provides a representation-theoretic interpretation of this basis of quasisymmetric functions, answering a question of Mason and Niese (2015). Additionally, we classify when these modules are indecomposable.