论文标题
SN 2017GCI:附近的I型超浮肿超新星,带有颠簸的尾巴
SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail
论文作者
论文摘要
我们介绍并讨论附近(z = 0.087)I型超小超新星(SLSN I)SN 2017GCI的光谱光度测量值(Z = 0.087),其峰值k校正的绝对幅度达到mg = -21.5 mag。它的光度和光谱进化包括慢速和快速发展的SLSN I的特征,因此有利于两个SLSN-I子类之间的连续分布。特别是,与其他SLSNE I类似,SN 2017GCI的多频光曲线在最大光后约103和142天显示了两个重新布置。有趣的是,这与最大光线后51天后大约6520 A左右出现了广泛的排放特征,然后在光曲线中呈锋利的膝盖。如果我们将此特征解释为HALPHA,那么这可以支持以下事实:凸起是射流与(富氢)偶然物质的晚期相互作用的标志。然后,我们将磁盘和CSM相互作用的合成光曲线拟合到SN 2017GCI的降压器上。在磁性情况下,拟合表明极地磁场BP = 6 x 1e14 g,磁性pinitial的初始周期= 2.8 ms,弹出质量mejecta = 9 msun = 9 msun和exjecta opta odability k = 0.08 cm g^{ - 1}。 CSM相互作用方案将意味着CSM质量为5 mSUN,射出质量为12 msun。最后,对第187天的螺旋光谱进行了建模,从而导致弹出的质量为10 msun。我们的模型表明,Magnetar或CSM相互作用可能是SN 2017GCI的功率来源,其祖细胞是庞大的(40 msun)恒星。
We present and discuss the optical spectro-photometric observations of the nearby (z=0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg=-21.5 mag. Its photometric and spectroscopic evolution includes features of both slow and of fast evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multi-band light curves of SN 2017gci show two rebrightenings at about 103 and 142 days after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 A after 51 days from the maximum light, which is followed by a sharp knee in the light curve. If we interpret this feature as Halpha, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen rich) circumstellar material. Then we fitted magnetar and CSM-interaction powered synthetic light curves onto the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp = 6 x 1e14 G, an initial period of the magnetar Pinitial=2.8 ms, an ejecta mass Mejecta=9 Msun and an ejecta opacity k = 0.08 cm g^{-1} . A CSM interaction scenario would imply a CSM mass of 5 Msun and an ejecta mass of 12 Msun. Finally, the nebular spectrum of phase 187 days was modeled, deriving a mass of 10 Msun for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive (40 Msun) star.