论文标题
用嘈杂的标记数据识别训练停止点
Identifying Training Stop Point with Noisy Labeled Data
论文作者
论文摘要
由于过度参数化,带有嘈杂标签的深层神经网络(DNNS)是一个具有挑战性的问题。在初始阶段,DNN倾向于以较高的速度以较高的速度适合干净的样品,然后以相对较低的速度适合嘈杂的样品。因此,使用嘈杂的数据集,测试准确性最初会提高并在后期阶段下降。要在最大可获得的测试准确性(MOTA)处找到一个早期停止点,最近的研究假设i)可以使用干净的验证集,或者ii)噪声比是已知的,或者两者兼而有之。但是,通常无法获得干净的验证集,并且噪声估计可能不准确。为了克服这些问题,我们提供了一种新的培训解决方案,没有这些条件。我们分析了不同条件下不同噪声比的训练准确性的变化率,以识别训练停止区域。我们进一步开发了一种基于小学习假设的启发式算法,该假设可以在MOTA上找到一个或接近MOTA的训练停止点(TSP)。据我们所知,我们的方法是第一个仅依靠\ textit {培训行为}的方法,同时利用整个培训集来自动找到TSP。我们通过CIFAR-10,CIFAR-100和一个现实世界中的噪声数据集在不同的噪声比,噪声类型和架构上验证了算法(AUTOTSP)的鲁棒性(AUTOTSP)。
Training deep neural networks (DNNs) with noisy labels is a challenging problem due to over-parameterization. DNNs tend to essentially fit on clean samples at a higher rate in the initial stages, and later fit on the noisy samples at a relatively lower rate. Thus, with a noisy dataset, the test accuracy increases initially and drops in the later stages. To find an early stopping point at the maximum obtainable test accuracy (MOTA), recent studies assume either that i) a clean validation set is available or ii) the noise ratio is known, or, both. However, often a clean validation set is unavailable, and the noise estimation can be inaccurate. To overcome these issues, we provide a novel training solution, free of these conditions. We analyze the rate of change of the training accuracy for different noise ratios under different conditions to identify a training stop region. We further develop a heuristic algorithm based on a small-learning assumption to find a training stop point (TSP) at or close to MOTA. To the best of our knowledge, our method is the first to rely solely on the \textit{training behavior}, while utilizing the entire training set, to automatically find a TSP. We validated the robustness of our algorithm (AutoTSP) through several experiments on CIFAR-10, CIFAR-100, and a real-world noisy dataset for different noise ratios, noise types, and architectures.