论文标题

连续功能Banach空间的投射张量产物的量子标记

Subprojectivity of projective tensor products of Banach spaces of continuous functions

论文作者

Causey, R. M.

论文摘要

Galego和Samuel表明,如果$ k,l $是可以Metrizable,紧凑的,Hausdorff空间,则$ c(k)\ wideHat {\ otimes}_πc(l)$是$ c_0 $饱和的,并且仅当它是$ k $ g $和$ k $和$ l $均可分散的时,只有$ c_0 $饱和。我们从其结果中删除了衡量性的假设,并将其从两倍的投射张量产品扩展到一般的$ n $ fold射击量张量产品,以表明对于任何$ n \ in \ Mathbb {n} $ in \ Mathbb {n} $ and Compact and Compact and Compact and Compact and Compact,Hausdorff spaces $ k_1,\ ldots,\ ldots,k_n $,$ n $,$ \ \ \ \ \ \ \ wide, i = 1}^n c(k_i)$是$ c_0 $ - 饱和时,仅当它是subprojective时,并且仅当每个$ k_i $都散布时。

Galego and Samuel showed that if $K,L$ are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_πC(L)$ is $c_0$-saturated if and only if it is subprojective if and only if $K$ and $L$ are both scattered. We remove the hypothesis of metrizability from their result, and extend it from the case of the two-fold projective tensor product to the general $n$-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces $K_1, \ldots, K_n$, $\widehat{\otimes}_{π, i=1}^n C(K_i)$ is $c_0$-saturated if and only if it is subprojective if and only if each $K_i$ is scattered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源