论文标题
NISQ设备上的量子电路演变
Quantum Circuit Evolution on NISQ Devices
论文作者
论文摘要
各种量子电路为各种类别的量子算法奠定了基础。简而言之,直到电路的经验采样分布足够接近所需的结果之前,参数化量子电路的重量变化。经常应用数值一阶方法以适合电路的参数,但是大多数情况下,电路本身,即门的实际组成是固定的。已经提出了与权重共同优化电路设计的方法,但经验结果相当稀缺。在这里,我们考虑了一种简单的进化策略,该策略解决了找到适当的电路体系结构和参数调整之间的权衡。我们通过仿真和实际量子硬件评估我们的方法。我们的基准问题包括横向田iSing Hamiltonian和Sherrington-Kirkpatrick旋转模型。尽管当前嘈杂的中间量子量子硬件有缺点,但与仿真相比,我们发现实际量子机的减速仅较小。此外,我们研究了哪些突变操作最大程度地有助于优化。结果提供了有关随机搜索启发式如何在实际量子硬件上行为的直觉,并为进化进化量子门电路的进一步改进提供了途径。
Variational quantum circuits build the foundation for various classes of quantum algorithms. In a nutshell, the weights of a parametrized quantum circuit are varied until the empirical sampling distribution of the circuit is sufficiently close to a desired outcome. Numerical first-order methods are applied frequently to fit the parameters of the circuit, but most of the time, the circuit itself, that is, the actual composition of gates, is fixed. Methods for optimizing the circuit design jointly with the weights have been proposed, but empirical results are rather scarce. Here, we consider a simple evolutionary strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning. We evaluate our method both via simulation and on actual quantum hardware. Our benchmark problems include the transverse field Ising Hamiltonian and the Sherrington-Kirkpatrick spin model. Despite the shortcomings of current noisy intermediate-scale quantum hardware, we find only a minor slowdown on actual quantum machines compared to simulations. Moreover, we investigate which mutation operations most significantly contribute to the optimization. The results provide intuition on how randomized search heuristics behave on actual quantum hardware and lay out a path for further refinement of evolutionary quantum gate circuits.