论文标题
紧凑型4维自旋梯度$ m $ -quasi-einstein歧管满足hitchin-thorpe不平等现象,$ m \ ge 1 $
Compact 4-Dimensional Spin Gradient $m$-quasi-Einstein Manifolds Satisfy the Hitchin-Thorpe Inequality when $m\ge 1$
论文作者
论文摘要
我们证明,具有$ m \ $ m \ in [1,\ infty] $的紧凑,连接和定向的4维梯度$ m $ -quasi-einstein歧管,这是一个自旋歧管,必须满足hitchin-thorpe的不平等。我们进一步表明,当潜在函数不繁琐时,这种歧管通用封面的同态构型是$ s^4 $或一定数量的$ s^2 \ times s^2 $的连接总和。
We prove that a compact, connected, and oriented 4-dimensional gradient $m$-quasi-Einstein manifold with $m\in [1, \infty]$ which is additionally a spin manifold must satisfy the Hitchin-Thorpe Inequality. We show further that the homeomorphism-type of the universal cover of such a manifold is either $S^4$ or a connected sum of some number of $S^2\times S^2$ when the potential function is nontrivial.