论文标题

耦合的有限体积和材料点方法,用于两相模拟的液体和气体流量

A coupled finite volume and material point method for two-phase simulation of liquid-sediment and gas-sediment flows

论文作者

Baumgarten, Aaron S., Couchman, Benjamin L. S., Kamrin, Ken

论文摘要

液体和颗粒状沉积物的混合物在许多工业,岩土技术和航空工程问题中都起着重要作用,从废物管理和运输(液体 - 补充混合物)到直升机转子下方的尘埃踢(气体 - 水分混合物)。这些混合流通常涉及数百十亿个单独的沉积物颗粒的大量运动,并且可以包含高度湍流的区域和静态的非流动区域。这种现象的广度需要使用连续仿真方法,例如材料点方法(MPM),该方法可以准确捕获这些大变形,同时还可以跟踪流动的拉格朗日特征(例如\ \ \ \粒子表面,弹性应力等)。 最近使用两阶段MPM框架模拟这些混合物的作品表现出了实质性的希望。但是,在模拟纯流体时,MPM的数值限制会阻碍这些方法。除了众所周知的粒子振铃不稳定和定义流入/流出边界条件的难度外,MPM还趋于在材料变形时积累正交误差,随着模拟的进展,总体误差增长速率增加。在这项工作中,我们提出了一个改进的两相连续模拟框架,该框架使用有限体积方法(FVM)来求解流体相位方程和MPM的流体相位方程,以求解运动的固相方程,从而实质上降低了这些误差的效果,并为这些混合物的长期模拟提供了更好的准确性和稳定性。

Mixtures of fluids and granular sediments play an important role in many industrial, geotechnical, and aerospace engineering problems, from waste management and transportation (liquid--sediment mixtures) to dust kick-up below helicopter rotors (gas--sediment mixtures). These mixed flows often involve bulk motion of hundreds of billions of individual sediment particles and can contain both highly turbulent regions and static, non-flowing regions. This breadth of phenomena necessitates the use of continuum simulation methods, such as the material point method (MPM), which can accurately capture these large deformations while also tracking the Lagrangian features of the flow (e.g.\ the granular surface, elastic stress, etc.). Recent works using two-phase MPM frameworks to simulate these mixtures have shown substantial promise; however, these approaches are hindered by the numerical limitations of MPM when simulating pure fluids. In addition to the well-known particle ringing instability and difficulty defining inflow/outflow boundary conditions, MPM has a tendency to accumulate quadrature errors as materials deform, increasing the rate of overall error growth as simulations progress. In this work, we present an improved, two-phase continuum simulation framework that uses the finite volume method (FVM) to solve the fluid phase equations of motion and MPM to solve the solid phase equations of motion, substantially reducing the effect of these errors and providing better accuracy and stability for long-duration simulations of these mixtures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源