论文标题
使用反向散射检测机器人网络中的Sybil攻击者
Detecting Colluding Sybil Attackers in Robotic Networks using Backscatters
论文作者
论文摘要
由于无线介质的开放性,由许多小型机器人组成的机器人网络容易受到Sybil攻击者的影响,Sybil攻击者可以制造无数的虚拟机器人。这种有害的攻击可以推翻机器人协作中的基本信任假设,从而阻碍了许多协作任务中机器人网络的广泛部署。现有的解决方案依靠笨重的多端纳系统来被动地获得细粒度的物理层特征,使它们无法承受小型机器人的负担。为了克服这一限制,我们提出了STACTID,这是一种轻巧的系统,该系统将羽毛状和无电散射标签附加到单人体机器人,以缓解SYBIL攻击。通过利用反向散射标签来有意创建可用于单恒定机器人可获得的丰富多路径签名,而不是被动地“观察”签名,而是主动地“积极地”操纵“多径传播”。特别是,这些签名用于仔细构建与Treat Advanced Sybil攻击者的相似性向量,后者进一步触发了功率缩放和勾结攻击以产生不同的签名。然后,开发了定制的随机森林模型,以准确推断每个机器人的身份合法性。我们在iRobot创建平台上实现散射,并在现实世界中的各种Sybil攻击下对其进行评估。实验结果表明,在基本和晚期SYBIL攻击下,ScatterID的高AUROC为0.987,并获得95.4%的总准确度。具体而言,它可以成功地检测到96.1%的假机器人,同时错误地拒绝了5.7%的合法机器人。
Due to the openness of wireless medium, robotic networks that consist of many miniaturized robots are susceptible to Sybil attackers, who can fabricate myriads of fictitious robots. Such detrimental attacks can overturn the fundamental trust assumption in robotic collaboration and thus impede widespread deployments of robotic networks in many collaborative tasks. Existing solutions rely on bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, making them unaffordable to miniaturized robots. To overcome this limitation, we present ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots for Sybil attack mitigation. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by exploiting backscatter tags to intentionally create rich multipath signatures obtainable to single-antenna robots. Particularly, these signatures are used to carefully construct similarity vectors to thwart advanced Sybil attackers, who further trigger power-scaling and colluding attacks to generate dissimilar signatures. Then, a customized random forest model is developed to accurately infer the identity legitimacy of each robot. We implement ScatterID on the iRobot Create platform and evaluate it under various Sybil attacks in real-world environments. The experimental results show that ScatterID achieves a high AUROC of 0.987 and obtains an overall accuracy of 95.4% under basic and advanced Sybil attacks. Specifically, it can successfully detect 96.1% of fake robots while mistakenly rejecting just 5.7% of legitimate ones.